THE EXPERT’S VOICE® IN JAVA” TECHNOLOGY:

Pro
XML Development
with Java" Technology

All the essential techniques you need to know to develop
powerful XML applications using Java™ technology!

Ajay Vohra and Deepak Vohra

Apress’




Pro XML Development
with Java™ Technology

Ajay Vohra and Deepak Vohra

APIess®



Pro XML Development with Java™ Technology
Copyright © 2006 by Ajay Vohra and Deepak Vohra

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-706-4
ISBN-10 (pbk): 1-59059-706-0

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

Apress, Inc. is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills

Technical Reviewer: Bharath Gowda

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Senior Production Editor: Laura Cheu

Compositor: Susan Glinert Stevens

Proofreader: Kim Burton

Indexer: Carol Burbo

Artist: Susan Glinert Stevens

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this bookis distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.



Dedicated to our parents






Contents at a Glance

About the AUTNOTS .. ..o XV
About the Technical REVIBWET . . .. ..o o e e e e Xvi
ACKNOWIBAOMENTS . . .. XVii

PART 1 Parsing, Validating, and Addressing

CHAPTER 1 Introducing XMLand Java .................ccoiiiiiiiininnnn., 3

CHAPTER 2 Parsing XML Documents ................ccoiiiiiiiiiiiieas. 33

CHAPTER 3 Introducing Schema Validation ............................... 65

CHAPTER 4  Addressingwith XPath .....................ccoiiiiiiiit, 85

CHAPTER5  Transforming with XSLT ..., 111
PART 2 Object Bindings

CHAPTER6  Object BindingwithJAXB ...t 139

CHAPTER 7 Bindingwith XMLBeans ..., 185
PART 3 XML and Databases

CHAPTER 8  Storing XML in Native XML Databases: Xindice ............... 215

CHAPTER9  Storing XML in Relational Databases ......................... 249
PART 4 DOM Level 3.0

CHAPTER 10  Loading and Saving with the DOM Level 3API ................ 267
PART 5 Utilities

CHAPTER 11  Converting XML to Spreadsheet, and Vice Versa .............. 289

CHAPTER 12 Converting XMLtoPDF ......... ..., 311



Vi

PART 6 Web Applications and Services

CHAPTER 13  Building Web Applications with Ajax .........................
CHAPTER 14  Building XML-Based Web Services ..........................



Contents

About the AUTNOTS .. ..o XV
About the Technical REVIBWET . . .. ..o o e e e e Xvi
ACKNOWIBAOMENTS . . .. XVii

PART 1

Parsing, Validating, and Addressing

CHAPTER 1 Introducing XMLandJava................................. 3
Scope Of ThISBOOK .. ..o v vt e e e 3
Overview of This Book's Contents ...............ccoiiiiniiinnt.. 5
XML 1.0 PriMer .« e e 5

XML Declarations . ......oovvviii e i 6
Elements . ... 6
Comments. ... ..o e 8
Processing Instructions . ...t 8
DOCTYPE Declarations. . .........ccviiriiiii i 8
EntitieS. ..o e e 9
Complete Example XML Document .............c.oovvvvennnn. 10
Namespacesin XML. ...t 10
XML Schema 1.0 Primer ... ..o i iieaans 11
Schema Declarations. ... 12
Built-in Datatypes. ... 12
Element Declarations...........ccvviiiiiiiiiiiiiii i, 12
Complex Type Declarations. ...........coviiiivininnnnnn, 13
Complex Content. ........coiiiii i e e 17
Simple Type Declarations .............cccvviiiiiieiennn., 17
Schema Example Document. ..., 18

vii



viii

CONTENTS

CHAPTER 2

CHAPTER 3

Introducing the Eclipse IDE ... 19
CreatingaJavaProject ..., 19
Settingthe BuildPath................ ... it 23
CreatingaJavaPackage...........ovvvviniininnnnneannnns 23
CreatingaJavaClass............ccviiiiiiiii i 24
Running a Java Application..................... ..ol 26
Importinga JavaProject ...t 29

QUMM .. e i e e e 31

Parsing XML Documents ................................. 33

Objectives of Parsing XML ... 33

Overview of Parsing Approaches ............ccovvvvieennnnnnnnn. 34
DOM APPIOach . ..vo vt it 34
Push Approach ... i 36
Pull Approach ....... ...t e e 37
Comparing the Parsing Approaches.............c.oevvvvennnn. 39

Setting Up an Eclipse Project ..., 39
Example XML Document ... 39
J2SE, Packages, and Classes . ........ovvivivieinnnnnnennnns 40
Parsing with the DOM Level 3API .............. ... oitaL. 41

Parsing With SAX 2.0 . ...t e e e e 48
JAXP Pluggability for SAX . ... 49
SAX FeatUreS. ... .ot e 49
SAX Properties .. .ovv v e e e 50
SAXHaNdIErS. ..ot e 51
SAX Parsing Steps ... e 52
SAX APLEXampIe. .o e e 53

Parsing with StAX . ... 57
CUrSOr APl . e e 57
lterator APl ... o 62

QUMM ..o e e i e e e 62

Introducing Schema Validation .......................... 65

Schema Validation APIS ...t e 65
Configuring JAXP Parsers for Schema Validation............... 66

Setting Up the Eclipse Project ..........c.cooviiviiiiiii it 68



CHAPTER 4

CONTENTS

JAXP 1.3DOM Parser APl .. ... .. e i 7
Create a DOM Parser Factory ...............ccoiiiiiiinn, 71
Configure a Factory for Validation. ........................... 72
Create aDOMParser .........ccovviii i, 72
Configure a Parser for Validation ............................ 73
Validate Usingthe Parser. ...t 73
Complete DOM APIExample . ........covviiiieiii i 73

JAXP 1.3 SAX Parser APl . ... e 76
Create a SAX Parser Factory ............ ...t 76
Configure the Factory for Validation.......................... 76
Create @a SAX Parser. ..o it 77
Configurethe Parser. ... 77
Validate Usingthe Parser..............cooiiiiiii i 78
Complete SAX API Validator Example......................... 78

JAXP 1.3 Validation APl ...... ... ..o 80
CreateaValidator...............c.oiiiiii e 80
SetanErrorHandler. ... 81
Validate the XML Document ..................cciiiiininnt. 81
Complete JAXP 1.3 Validator Example........................ 81

QUMM .. e i e e e 83

Addressingwith XPath ................................... 85

Understanding XPath Expressions ...............ccoiiiiinn... 85
Simple Example ... e 85
XPath Expression Examples. ............cciiiiiiiii it 86
Datatypes. ... e e 88
LocationPath ... 88

Applying XPath EXpressions ............ccoviiiiiiiiiiniinnnnnn 93
Comparing the XPath APl to the DOMAPI ..................... 94
Setting Up the Eclipse Project............ccovieiiii i, 95

JAXP 1.3 XPath APl . ... 96
Explicitly Compiling an XPath Expression ..................... 97
Evaluating a Compiled XPath Expression...................... 97
Evaluating an XPath Expression Directly ...................... 99
Evaluating Namespace Nodes. ...............coiiiinn.. 100
JAXP 1.3 XPath Example Application........................ 102

JDOM XPath APl ... 105
JDOM XPath Example Application. .......................... 108

SUMMIAIY .ttt i i e e i i e 110



X

CONTENTS

CHAPTER 5

PART 2

CHAPTER 6

Transforming with XSLT ................................. 111
Overview of XSLT ... e e 112
SimpleExample ... 112
XSLT Processing Algorithm . ...t 114
XSLT Syntaxand Semantics ...........covvviie it 115
Setting Up the Eclipse Project ...t 120
JAXP 1.3 Transformation APIS . ... 121
TrAX Application ... e e 124
Transforming Identically .................. ...l 126
Removing Duplicates ............cooiiiii et 127
Sorting Elements. . ... 128
Convertingto HTML . ...t 128
Merging Documents. ... 130
Obtaining Node Values with XPath .......................... 131
Filtering Elements. . ... 132
Copying NOAES ..o vv vt e e e 133
Creating Elements and Attributes........................... 133
Adding Indentation ............ ... .. i 134
QUMM ottt i e e e i e 135

Object Bindings

Object Binding with JAXB ............................... 139
OVBIVIBW i e e 139
JAXB 1.0 o e 140
Architecture. . ... 140
XML Schema Binding to Java Representation................. 141
ExampleUse Case ........coviiei it 145
Downloading and Installing the Software .................... 147
Creating and Configuring the Eclipse Project ................. 147
Binding the Catalog Schema to Java Classes................. 149
Marshaling an XML Document . ................ccooein... 153
Unmarshaling an XML Document.................c.coovent. 157
Customizing JAXB Bindings. .........cooviiiiiii it 160
Global Binding Declarations. ...........ccovvviviieninann.. 162
Schema Binding Declarations. ............................. 162
Datatype Binding Declarations ............................. 163
Class Binding Declarations ..............cooviiivieennnnnn.. 163

Property Binding Declarations........................oo.l. 163



CHAPTER 7

PART 3

CHAPTER 8

CONTENTS

JAXB 2.0 . e 163
Architecture. . ... 163
Annotations ... 164
XML Schema Binding to Java Representation................. 165
ExampleUse Case ........coviieiii it 169
Downloading and Installing Software........................ 169
Creating and Configuring Eclipse Project..................... 169
Binding Catalog Schema to Java Classes .................... 171
Marshaling an XML Document ................cooiiiiina., 174
Unmarshaling an XML Document........................... 177
Binding Java Classes to XML Schema....................... 180

SUMMAIY ..t i e i e e e 183

Binding with XMLBeans ................................. 185

OV VI BW .ttt e e 186

Setting Up the Eclipse Project ...t 187

Compilingan XML Schema .............ccoiiiiiii i 189

Customizing XMLBeans Bindings ..........c.vvvvievinininnnnnnns 196

Marshaling an XML Document ..., 197

Unmarshaling an XML Document ..., 200

Traversing an XML Document with the XmICursor APl ............. 203
Positioningthe Cursor ...t 204
AddinganElement........... ... . i 206
Selecting Nodes with XPath. ...................ccooiii.at. 207
Querying an XML Document with XQuery .................... 208

SUMMAIY .. i e i e e 211
XML and Databases

Storing XML in Native XML Databases: Xindice ......... 215

VIV BW .t e e 217
SimpleExample ... 217

Installing the Xindice Software .................... ...l 218
Configuring Xindice with the JBoss Server ................... 219

Creating an Eclipse Project ..., 219

Xi



Xii

CONTENTS

CHAPTER 9

PART 4

CHAPTER 10

Using the Xindice Command-line Tool ..............ccovivvinnnn, 222
Command Syntax ...t 222
Command Configuration in Eclipse.......................... 223
Xindice Command ExampleS...........cvveiiiiiinnnnnnnt. 225
Deleting a Xindice Collection..................cooiiiina.. 236

Using Xindice with the XML:.DBAPI .................ccciiiii.. 237
Creating a Collection in the Xindice Database................. 237
Adding an XML Document to the Xindice Database............ 239
Retrieving an XML Document from the Xindice Database....... 239
Querying the Xindice Database Using XPath.................. 240
Modifying the Document Using XUpdate . .................... 240
Deleting an XML Document. .............ccoiiiiiiiinin.., 242

QUMM ottt i e e e i e 247

Storing XML in Relational Databases ................... 249

VIV BW .t e e e 249

Installing the Software ............ ... 250

Setting Up the Eclipse Project ..., 251

SelectingaDatabase ...........ccoeiiiiiiii i e 252

Storingan XML Document .............. ... i 254

Retrieving an XML Document ..., 257

Navigating an XML Document ..............ciiiiiiiiinninnnt. 258

Complete Example Application ...............ccoiiiiiiiin... 260

QUMM ottt i e e e i e 264
DOM Level 3.0

Loading and Saving with the DOM Level 3API .......... 267

OVBIVIBW e e e e 268
Introducing the Load APl ......... ... 268
Introducingthe Save APl ........ ...t 268
Comparing JAXP’s DocumentBuilder and Transformer APIs. .. .. 269

Creating an Eclipse Project ..., 269

Loading an XML Document ...........ccoviiiiiiiii e 270

Saving an XML Document ............c i 275

Filtering an XML Document ........... ...t 279

SUMMIAIY ottt i e e i i e 285



PART 5

CHAPTER 11

CHAPTER 12

PART 6

CHAPTER 13

CONTENTS

Utilities
Converting XML to Spreadsheet, and Vice Versa ....... 289
OVBIVIBW i e e e 289
Creating an Eclipse Project ......... ...t 290
Converting an XML Document to an Excel Spreadsheet ............ 291
Converting an Excel Spreadsheet to an XML Document ............ 301
SUMMAIY ..t i e i e e e 309
Converting XMLtoPDF .................................. 31
Installing the Software ... 311
Setting Up the Eclipse Project ...t 312
Converting an XML Documentto XSL-FO ........................ 313
Setting the System Properties. ............ccoovvviiii.t. 317
CreatingaDocument............coiiiiiiiiiii et 318
Creatinga Transformer ..............cciiiiiiiiiinnn.. 318
Transforming the XML Document to XSL-FO. ................. 318
Generatinga PDF Document ...........ccoiiiiiii i 321
Creatinga FOP Driver............oo i 321
Converting XSL-FOtOPDF. ..o 322
Viewing the Complete Example. .............ccovvviivinn... 322
SUMMAIY .. i e i e e 325

Web Applications and Services

Building Web Applications with Ajax .................... 329
What Is XMLHttpRequest? ...........ccviiiiiii e 330
Installing the Software ............ ... 331
Configuring JBoss with the MySQL Database ..................... 332
Setting Up the Eclipse Project ...t 333
Developing an Ajax Application .................cc i 337

Browser-Side Processing..........c.cooiii i 338

Web Server—Side Processing ..........cvoviiiiiiiiiiiiinnn 340

SUMMaAIY .. i e i e e e 351

xiii



Xiv

CONTENTS
CHAPTER 14 Building XML-Based Web Services ...................... 353
Overview of Web Services ...t 353
Understanding the Web Services Architecture .................... 354
Basic Web Service Concepts........ccovvviiiiiiiiinn, 354

Web Service Architectural Models .......................... 356
Example Use Case Scenarios ............c.ccovvieiiiniinninnnns. 359
Uploading Documentstoa Project.......................... 359
Downloading Documents from a Project..................... 360
Getting Information About All Projects ....................... 360
Removing Documents from a Project........................ 360
Understanding the SOAP 1.1 Messaging Framework ............... 360
Simple SOAP 1.1 Message Exchange ....................... 360
SOAP 1.1 Messaging (WS-IBP 1.1) ........cvvvviieninn.et. 362
SOAP 1.2 and SOAP 1.1 Differences ........................ 368
SOAP 1.1 Message with Attachments ....................... 368
Understanding WSDL 1.1 . ... .ttt 370
WSDL 1.1 Document Structure. ...l 370
Example WSDL 1.1 Document ..............ccoieiiiinn.n, 372
Namespace Declarations..................cccviiveiinn... 372
Schema Definition ... 373
Schemalmport. ... ... e 376
Abstract Message Definitions ................... oot 376

POt TYPE . oo e 378

Port Type Bindings to SOAP 1.1/HTTP ....................... 379
Service Port. ... 385
UsiNg JAX-WS 2.0 . ..o i 385
Installing the Software............. ...t 386
Setting Up the Eclipse Project...........covviiiiint. 386
Setting Up the wsimport Tool ...t 388
WSDL 1.1 toJavaMapping........covvviinniieinnnnnnns. 389
Implementing the ProjectPortType SEl....................... 397
Building the Web Service..............ccoiiiiiiiiiint, 400
Deploying the Web Service ............cooiiiiiiiin.n, 402
RegisteringaNew User ... ... 406

Web Service Client ............oo i 407
SUMMaAIY .. i e i e e e 415
INDEX .. i e 47



About the Authors

AJAY VOHRA is a senior solutions architect at DataSynapse (http://www.
datasynapse.com). His current focus is service-oriented architecture based
on grid-enabled virtualized application services. He has 15 years of software
development experience, spanning diverse areas such as X Windows Toolkit,
ATM networking, automatic conversion of COBOL to J2EE applications, and
J2EE-based enterprise applications. He has a master’s degree in computer
science from Southern Illinois University—-Carbondale and an MBA from
the University of Michigan Ross School of Business in Ann Arbor, Michigan.
Ajay is an avid golfer and loves swimming in Lake Michigan with his family.

DEEPAK VOHRA is an independent consultant and a founding member of
NuBean (http://www.nubean.com). He has worked in the area of XML and
Java programming for more than five years and is a Sun Certified Java
Programmer and a Sun Certified Web Component Developer. He has a
master’s degree in mechanical engineering from Southern Illinois University—
Carbondale and has published original research papers in the area of fluidized
bed combustion. Currently, he is working on an automated, web-based
J2EE development environment for NuBean. When not programming,
Deepak likes to bike and play tennis.

Xv



About the Technical Reviewer

BHARATH GOWDA works as a technical account manager (TAM) at
Compuware in Michigan. In his capacity as a TAM, he is responsible for
crafting development solutions based on Optimal] in the application
delivery management space. Previously, he spent most of his time building
and enhancing enterprise-level J2EE solutions for organizations in the
Michigan region.

Bharath earned his master’s degree in computer science from the
University of Southern California-Los Angeles. He lives in Ann Arbor,
Michigan, with his wife, Swarupa.

XVi



Acknowledgments

Erst, we would like to thank all the W3C contributors who worked on numerous XML-related Drafts,
Working Group Notes, and Recommendations. Second, we would like to thank all the contributors
who worked on XML-related Java Specification Requests. Third, we would like to thank all the soft-
ware developers who worked on creating the open source software used in this book. Fourth, we
would like to thank our reviewers and editors, Bharath Gowda, Kim Wimpsett, Laura Cheu, Chris Mills,
and Elizabeth Seymour.

Ajay would like to thank his mentor, Professor Kenneth J. Danhof, Ph.D., for his guidance at
Southern Illinois University—Carbondale. And above all, Ajay would like to thank his wife, Pam, and
their kids, Sara and Stewart, for their love and understanding during the long hours spent writing
this book.

Xvii






PART 1

Parsing, Validating,
and Addressing







CHAPTER 1

Introducing XML and Java

Extensible Markup Language (XML) is based on simple, platform-independent rules for representing
structured textual information. The platform-independent nature of XML makes it an ideal format
for exchanging structured textual information among disparate applications. Therefore, at the heart
of it, XML is about interoperability.

XML 1.0 was made a W3C! Recommendation in 1998. Sun formally introduced the Java program-
ming language in 1995, and within a few years Java had cemented its status as the preferred
programming and execution platform for a dizzyingly diverse set of applications. Incidentally, both
Java and XML were shaped with an eye toward the Internet. Therefore, it is not surprising that most
of the XML-related W3C Recommendations have inspired corresponding Java-based application
programming interfaces (APIs). Some of these Java APIs are part of the Java Platform Standard Edition
(J2SE) platform; others are part of various open source or proprietary endeavors. XML-related W3C
Recommendations and their corresponding Java APIs are the main focus of this book.

Scope of This Book

In this book, we have two main objectives. Our first objective is to discuss a selected subset of XML-
related W3C Recommendations that have inspired corresponding Java APIs. And to that end, here is
a quick synopsis of the XML-related W3C Recommendations and Java APIs that we’ll cover in this book:

e XML 1.0 (http://www.w3.0rg/TR/REC-xml/) describes precise rules for crafting a well-formed
XML document and describes partial rules for processing well-formed? documents. Java APT
for XML Processing (JAXP) 1.3 in J2SE 5.0 is its corresponding Java API. In addition, Streaming
API for XML 1.0 (StAX) in J2SE 6.0 is relevant for processing XML documents.

e XML Schema 1.0 (http://www.w3.0rg/TR/xmlschema-1/) describes a language that can be
used to specify the precise structure of an XML document and constrain its contents. JAXP 1.3
in J2SE 5.0 and Java XML Architecture for XML Binding (JAXB) 2.0 in Java 2 Enterprise Edition
(J2EE)3 5.0 are corresponding Java APIs.

e XML Path Language (XPath) 1.0 (http://www.w3.0rg/TR/xpath) describes a language for
addressing parts of an XML document. The XPath API within JAXP 1.3 is its corresponding
Java APIL

1. The World Wide Web Consortium (W3C) is dedicated to developing interoperable technologies. You can find
more information about the W3C at http://www.w3.o0rg.

2. Well-formed XML documents are defined as part of the XML 1.0 specification at http://www.w3.0rg/TR/2004/
REC-xm1-20040204/#sec-well-formed.

3. http://java.sun.com/javaee/



CHAPTER 1 INTRODUCING XML AND JAVA

XSL Transformations (XSLT) 1.0 (http://www.w3.0rg/TR/xs1t) describes a language for trans-
forming an XML document into other XML or non-XML documents. Transformation API for
XML (TrAX) within JAXP 1.3 is its corresponding API.

Document Object Model Level 3 Load and Save (http://www.w3.0rg/TR/DOM-Level-3-LS/)
defines a platform- and language-neutral interface for bidirectional mapping between an
XML document and a DOM document. The DOM Level 3 API within JAXP 1.3 is its corre-
sponding APIL

SOAP*1.1and 1.2 (http://www.w3.0rg/TR/soap/) define a messaging framework for exchanging

XML content across distributed processing nodes. SOAP with Attachments API for Java (SAAJ)
1.3 is its corresponding Java API.

Web Services Description Language (WSDL) 1.1 (http://www.w3.0rg/TR/wsdl) is an XML-based
format for describing web service endpoints. The Java API for XML Web Services JAX-WS 2.0)
in J2EE 5.0 is its corresponding Java API.

Our second objective is to discuss selected XML-related utility Java APIs that are useful in building
interoperable enterprise software solutions. And to that end, here are the utility Java APIs discussed
in this book:

The XMLBeans 2.0 API, which is used for XML binding to JavaBeans. This is an alternative to
JAXB 2.0 and has some pros and cons compared to JAXB 2.0.

The XML:DB? group of APIs, which can be used to access and update XML documents stored
in a native XML database.

The Java Database Connectivity (JDBC) 4.0 API, which is useful for storing XML content
within a relational database.

The Apache POI® API, which is useful for transforming XML content into Microsoft Excel”
spreadsheets.

The Apache Formatting Objects Processor (FOP)8 API, which is useful for transforming XML
content into Portable Document Format (PDF).?

We aim to cover all this material from a pragmatic viewpoint; by that we mean we will do
the following:

Briefly explain various XML-related W3C Recommendations in simple, straightforward
terms, without being imprecise.

Discuss related Java APIs from a developer’s viewpoint, without being tedious.

Based on the overall objectives of this book, we think this book is suitable for an intermediate-
to advanced-level Java developer who understands introductory XML concepts and the J2SE 5.0 core

APIs.

Note This book is not a comprehensive, in-depth survey of XML-related W3C Recommendations. We think all
W3C Recommendations are well written and are the best source for such comprehensive information.

W RN O

SOAP is not an acronym for anything anymore; it is just a name.

XML:DB APIs are part of the XML DB initiative at http://xmldb-org.sourceforge.net/xupdate/.

Apache POI defines pure Java APIs for manipulating Microsoft file formats (http://jakarta.apache.org/poi/).
Microsoft Excel is part of Microsoft Office (http://www.microsoft.com).

You can find more information about the Apache FOP project at http://xmlgraphics.apache.org/fop/.
PDF is a de facto standard interoperable file format from Adobe (http://www.adobe.com).



CHAPTER 1 INTRODUCING XML AND JAVA

Overview of This Book’s Contents

We have strived to cover a wide swath of XML-related Java APIs in this book, ranging from basic,
building-block APIs used to parse XML documents to more advanced APIs used to implement interop-
erable XML-based web services. This book is organized in five parts. Part 1 spans Chapters 1 through 5
and covers basics of parsing, validating, addressing, and transforming XML documents. Part 2
comprises Chapters 6 and 7 and covers the binding of XML Schema to Java types. Part 3 includes
Chapters 8 and 9 and focuses on XML and databases. Part 4 consists of Chapters 10 through 12 and
focuses on transforming the XML document model to other document models. Part 5 consists of
Chapters 13 and 14 and focuses on XML-based web applications and web services. Here is a quick
synopsis of what is in each chapter:

* Chapter 1 reviews XML 1.0 and XML Schema 1.0.

* Chapter 2 discusses the parsing of XML documents using JAXP 1.3 in J2SE 5.0 and StAX 1.0 in
J2SE 6.0.

e Chapter 3 discusses validating an XML document with an XML Schema, and in this context,
we cover the following APIs: JAXP 1.3 APIs: SAX parser, DOM parser, and the Validation APL

* Chapter 4 reviews XPath 1.0 and discusses the JAXP 1.3 and JDOM 1.0 XPath APIs.
* Chapter 5 reviews XSLT 1.0 and discusses the TrAX API defined within JAXP 1.3.

* Chapter 6 discusses the mapping of XML Schema to Java types and covers the JAXB 1.0 and
2.0 APIs.

e Chapter 7 discusses the mapping of XML Schema to JavaBeans and covers the XMLBeans 2.0 API.

» Chapter 8 discusses native databases and covers the XML:DB APIs. We use the open source
Apache Xindice native XML database as the example database in this chapter.

* Chapter 9 discusses storing an XML document in a relational database management system
(RDBMS) using the JDBC 4.0 API.

e Chapter 10 discusses DOM Level 3 Load and Save and the DOM Level 3 API defined within
JAXP 1.3.

* Chapter 11 discusses converting the XML document model to a Microsoft Excel spreadsheet
using the Apache POI APL.

* Chapter 12 discusses converting the XML document model to a PDF document model using
the Apache FOP API.

* Chapter 13 discusses Asynchronous JavaScript and XML (Ajax) web programming techniques
for creating highly interactive web applications.

e Chapter 14 discusses SOAP 1.1, SOAP 1.2, and WSDL 1.1 and discusses the JAX-WS 2.0 Java
API, which is included in J2EE 5.0. Chapter 14 brings together a lot of the material covered in
this book.

XML 1.0 Primer

XML is a text-based markup language that is the de facto industry standard for exchanging data
among disparate applications. XML defines precise syntactic rules for what constitutes a well-formed

10. XML 1.0 is a W3C Recommendation (http://www.w3.0rg/TR/2004/REC-xm1-20040204/), and XML 1.1 is a W3C
Recommendation (http://www.w3.0rg/TR/xml11/).



CHAPTER 1 INTRODUCING XML AND JAVA

XML document. This primer is a non-normative discussion of these rules. We will gradually intro-
duce these rules and use them to show how to incrementally build an XML document.

Before we proceed, we want to mention two central concepts that underlie all the syntactic
rules defining an XML document:

¢ First, all syntactic constructs within an XML document are delimited by markup character
sequences, which implies that within the body of any syntactic construct, the markup character
sequences are not allowed. For example, a syntactic construct called a start tagis delimited by
< and > characters, which implies that these two characters cannot appear within the body of
a start tag.

¢ Second, ifyouneed to get around the limitation described in the previous bulleted item, escape
character sequences allow you to do that. (We do not expect this second concept to be imme-
diately clear, but we will elaborate on this concept later in the “Elements” section.)

We will begin where most XML documents begin: XML declarations.

XML Declarations

A well-formed XML document can begin with an XML declaration. An XML declaration can be omitted,
but if it appears, it should be the first thing within a document. You define an XML declaration
as follows:

<?xml version="'1.0" ?>

The version attribute specifies the XML version, and it is a required attribute. The XML declara-
tion may include additional attributes: encoding and standalone. An example XML declaration with
the encoding and standalone attributes is as follows:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>

The encoding attribute specifies the character set used to encode data in an XML document.
The default encoding is UTF-8. The standalone attribute specifies whether the XML document refer-
ences external entities. If no external entities are referenced, specify the standalone attribute as yes.

Elements

The basic syntactic construct of an XML document is an element. An element in an XML document
is delimited by a start tag and an end tag. An example of an XML element is as follows:

<journal></journal>

A start tag within an element is delimited by the < and > characters and has a tag name. In the
previous start tag, the name is journal. The precise rules for a valid tag name are fairly complex and
best left to the W3C Recommendation. However, it is useful to keep in mind that a tag name must
begin with a letter and can contain hyphen (-) and underscore (_) characters. An end tag is delimited
by the </ and > character sequences and also contains a tag name.

A document must have a single root element, which is also known as the document element.

If you assume that the journal element is your root element, then your document so far looks
as follows:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>
<journal></journal>



CHAPTER 1 INTRODUCING XML AND JAVA

This is an example of a well-formed XML document, where of course the XML declaration on
the first line is optional; omitting the XML declaration would still leave you with a well-formed
document.

An element can contain other nested elements. So, for example, the root element may contain
a nested element, as shown here:

<?xml version='1.0' encoding="UTF-8' standalone='yes' ?>
<journal>

<article></article>
</journal>

Elements may contain text content. So, for example, with some arbitrary text content added to
the article element, the document now looks as follows:

<?xml version='1.0" encoding="'UTF-8' standalone='yes' ?>
<journal>

<article>This is some arbitrary text!</article>
</journal>

Of course, element text content cannot contain any delimiter character sequences such as </.
One way to get around that is to enclose element content within a CDATA construct, and assuming
you do that for this example, your document now looks as follows:

<?xml version="1.0" encoding="'UTF-8' standalone='yes' ?>
<journal»>
<article>
<![CDATA[This is some arbitrary text <within> a CDATA!]]>
</article>
</journal>

An element may of course have no nested elements or content. Such an element is termed
an empty element, and it can be written with a special start tag that has no end tag. For example,
<article/> is an empty element. If you include this empty element within your document, the docu-
ment looks like this:

<?xml version='1.0' encoding="UTF-8' standalone='yes' ?>
<journal>
<article>
<I[CDATA[This is some arbitrary text <within> a CDATA!]]>
</article>
<article/>
</journal>

Elements can have attributes, which are specified in the start tag. An example of an attribute is
<article title="A Tutorial on XML 1.0"></article>.An attribute is defined as a name-value pair,
and in the previous example, the name of the attribute is of course title, and the value of the
attribute is A Tutorial on XML 1.0.With an attribute added, the example document looks as follows:

<?xml version='1.0" encoding="UTF-8' standalone='yes' ?>
<journal>
<article title="A Tutorial on XML 1.0" >
<![CDATA[This is some arbitrary text <within> a CDATA!]]>
</article>
<article/>
</journal>



CHAPTER 1 INTRODUCING XML AND JAVA

Now let’s assume you want to add another attribute named date with the value <04/12/2006>.
If you recall the first central concept we mentioned at the outset of this primer, you are not allowed
to include delimiter characters within an attribute value. However, the second central concept
mentioned earlier comes to your rescue: you can use the 81t; character sequence to escape <, and—
yes, you guessed it—you can use the 8gt; character sequence to escape >. So, with that in place, the
document now looks as follows:

<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>

<journal>
<article date="81t;04/12/20068gt;" title="A Tutorial on XML 1.0" >
<![CDATA[This is some arbitrary text <within> a CDATA!]]>
</article>
<article/>

</journal>

Another mechanism for including delimiter characters within the body of a construct is to use
escaped numeric references. For example, the numeric American Standard Code for Information
Interchange (ASCII) value for the > character is 62, so you can use the &#62; character sequence
instead of &gt ;. Using escaped numeric references is of course the most general mechanism for
including delimiter characters within a construct’s body.

Comments

You can define comments in an XML document within a comment declaration as shown in the
following example:

<!--This is a comment - ->

Comments can appear anywhere outside markup, which consists of start tags, end tags, empty
element tags, comments, CDATA sections, escape character references, and entity references (discussed
later in the “Entities” section).

Processing Instructions

Processing instructions in an XML document specify directions for applications that are expected to
process the document. The semantics associated with these instructions are application specific.
The syntax of a processing instruction is as follows:

<?target "instructions"?>

In a processing instruction, target specifies the target application that is expected to process
the instruction, and instructions specifies the processing instructions.

DOCTYPE Declarations

An XML document can also include a document type definition (DTD).!! A DTD defines the struc-
ture of an XML document. If the content of an XML document conforms to the structure imposed by
its DTD, then such a document is termed valid. A DTD is defined in a DOCTYPE declaration. A DOCTYPE
has three types of DTD specifications: internal, private, and public. You can specify an internal DTD
within an XML document as follows:

11. ADTD is not an XML document and is beyond the scope of this book. However, numerous tutorials available
on the Internet can quickly acquaint you with the basics of DTDs.



CHAPTER 1 INTRODUCING XML AND JAVA

<IDOCTYPE root_element [Elements, Attributes]>

For example, you could have an internal DTD for the example document as shown here:

<!DOCTYPE journal

[
<!ELEMENT journal (article)*>

<IELEMENT article (#PCDATA)>
<IATTLIST article title CDATA #IMPLIED>

1>
You can specify a private external DTD as follows:
<IDOCTYPE rootElement SYSTEM "DTDLocation">

For example, assuming a DTD for the example document exists in a local file named journal.dtd,
you can specify a private external DTD as shown here:

<IDOCTYPE journal SYSTEM "journal.dtd">
You can specify a public external DTD as follows:
<!DOCTYPE rootElement PUBLIC "DTDName" "DTDLocation">

So, assuming a DTD for the example document has a public name of - //Apress.//DTD Journal
Example 1.0//EN and exists at http://www.apress.com/javaxml/dtd/journal.dtd, you can specify a
public external DTD as shown here:

<IDOCTYPE journal PUBLIC "-//Apress.//DTD Journal Example 1.0//EN"
"http://www.apress.com/javaxml/dtd/journal.dtd">

Entities

An entity in an XML document is a storage unit that can be referenced with an entity reference. Entities
may be parsed or unparsed. Parsed entities act like replacement text, and this text replaces the entity
references within the document. Unparsed entities may or may not be text, and if text, they may not
be XML text. Unparsed entities are never parsed into the XML document, and they are essentially
passed through to the processing application. It is up to the processing application to attach any
meaning to these unparsed entities.

An entity is one of the following types: internal, parsed general entity; external, parsed general
entity; or external, unparsed general entity. The syntax of an internal, parsed general entity is as follows:

<IENTITY entity name ‘“entity value">
The syntax of a private, external parsed general entity is as follows:
<IENTITY entity name SYSTEM "SYSTEM URI">
The syntax of a public, external, parsed general entity is as follows:
<IENTITY entity_name PUBLIC "publicId" "PUBLIC_URI">

The external, unparsed general entity is used to reference data that an XML document does not
have to parse. The syntax of an external, unparsed general entity is as follows:

<IENTITY entity name SYSTEM "SYSTEM_URI" NDATA notation_name>
<IENTITY entity name PUBLIC "publicId"  "Public_URI" NDATA notation_name>

All entity declarations must be within a DTD or an internal DTD declaration within a DOCTYPE.
As an example, the escape sequences &1t; and 8gt; discussed earlier are in fact entity references to



10

CHAPTER 1 INTRODUCING XML AND JAVA

implicit, internal, parsed entities. In fact, you can make these implicit entities explicit, as shown in
the following example:

<IDOCTYPE journal [
<IENTITY 1t ‘&#60;'>
<IENTITY gt ‘&i#62;'>
1>

The XML declaration and the entity declarations form the prolog of an XML document.

Complete Example XML Document

Listing 1-1 shows the complete example XML document.

Listing 1-1. Complete Example XML Document

<?xml version="1.0' encoding="UTF-8' ?>
<IDOCTYPE journal [
<IENTITY 1t '&#60;'>
<IENTITY gt '&it62;'>
<!ELEMENT journal (article)*>
<VELEMENT article (#PCDATA)>
<IATTLIST article title CDATA #IMPLIED>
1 >
<!--XML declaration must be the first thing in a document, if it appears at all -->
<!--journal is the root element -->
<journal>
<article date="81t;04/12/20068gt;" title="A Tutorial on XML 1.0" >
<![CDATA[This is some arbitrary text <within> a CDATA!]]>
</article>
<!-- An empty element may of course have attributes -->
<article title="XSLT tutorial" />
</journal>

Namespaces in XML

An XML Namespace associates an element or attribute name with a specified URI and thus allows
for multiple elements (or attributes) within an XML document to have the same name yet have
different semantics associated with those names because they belong to different XML Namespaces.
The key point to understand is that the sole purpose of associating a uniform resource indicator (URI)
to a namespace is to associate a unique value with a namespace. There is absolutely no requirement
that the URI should point to anything meaningful.

You specify an XML Namespace through one of two reserved attributes:

¢ You can specify a default XML Namespace URI using the xmlns attribute.

¢ You can specify a nondefault XML Namespace URI using the xmlns:prefix attribute, where
prefix is a unique prefix associated with this XML Namespace.

An element or an attribute is designated to be part of an XML Namespace either by explicitly
prefixing its name with an XML Namespace prefix or by implicitly nesting it within an element that
has been associated with a default XML Namespace. It is important to understand that a namespace
prefix is merely a syntactic device to impart brevity to a namespace reference and that the real
namespace is always the associated URI. All this is best illustrated through an example, so turn your
attention to the following code:



CHAPTER 1 INTRODUCING XML AND JAVA

<?xml version='1.0' encoding="UTF-8' ?>
<jsp:root xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://java.sun.com/JSP/Page http://www.nubean.com/schemas/jsf 1_1.xsd"
>
<f:view xmlns:f="http://java.sun.com/jsf/core" >
<f:verbatim></f:verbatim>
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head><title>This was typed by hand</title></head>
<body>
<a href="http://www.w3.0rg/TR/REC-xml-names/">Namespaces in XML</a>
</body>
</html>
</f:view>
</jsp:root>

In this example, the root elementisin the http://java.sun.com/JSP/Page XML Namespace and
is designated as such through the use of the associated jsp prefix in its element name, as in jsp:root.
As another example, the viewelementisin the http://java.sun.com/jsf/core XML Namespace and
is marked as such through the associated f prefix, as in the f:view element name. As an example of
a default XML Namespace, the html element and all its nested elements have no prefix and are in the
default XML Namespace associated with the http://www.w3.0rg/1999/xhtml URI.

XML Schema 1.0 Primer

The XML Schema 1.012 definition language specifies the structure of an XML document and constrains
its content. The key concept to understand is that a schema based on the XML Schema language
defines a class of valid XML documents. A document is considered valid with respect to a schema if
it conforms to the structure defined by the schema. A valid XML document is formally referred to as
an instance of the schema document. As a rough analogy, what a Java class is to a Java object, a
schema is to an XML document.

One more important point to keep in mind is that a schema is also an XML document. In fact,
this was one of the key motivations for the XML Schema language; the alternative structure stan-
dard, which is a DTD, is not an XML document. In case it is not already obvious, you could actually
write a schema for an XML Schema-based schema document!

This is a non-normative discussion of the XML Schema language. As far as possible, we will
explain various XML Schema constructs in the context of an example schema. We will show how to
build an example schema incrementally as we explain various XML Schema constructs. The example
schema will define a structure for the example XML document shown in Listing 1-2.

Listing 1-2. Example XML Document

<?xml version='1.0' encoding='UTF-8' ?>
<catalog publisher="0'Reilly" title="OnJava.com" >
<journal date="2004-05-05" >

<article>

<title>Java and XML</title>

<author>Narayanan Jayaratchagan</author>

12. See XML Schema Part 1: Structures (http://www.w3.0rg/TR/xmlschema-1/) and XML Schema Part 2: Datatypes
(http://www.w3.0rg/TR/xmlschema-2/) for more information.

1



12

CHAPTER 1 INTRODUCING XML AND JAVA

</article>
</journal>
</catalog>

Schema Declarations

The root element of a schema is schema, and it is defined in the XML Schema namespace
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema". An example schema document with its root
element is as follows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
</xsd:schema>

Built-in Datatypes

The XML Schema language has 44 built-in simple types that are specified in XML Schema Part 2:
Datatypes (http://www.w3.0rg/TR/xmlschema-2/). These datatypes of course belong to the XML
Schema namespace, so we will use them with the xsd: prefix, as in xsd:string. Table 1-1 lists the
most commonly used built-in datatypes. For a complete list of built-in datatypes, consult the W3C
Recommendation.

Table 1-1. Commonly Used Built-in Datatypes

Datatype Description Example

string A character string New York, NY

int —2147483648 to 2147483647 +234,-345, 678987

double A 64-bit floating point number —345.e-7, NaN, -INF, INF

decimal A valid decimal number -42.5,67,92.34, +54.345

date A date in CCYY-MM-DD format 2006-05-05

time Time in hh:mm:ss-hh:mm format 10:27:34-05:00 (for 10:27:34 EST, which is
=5 hours UTC)

Element Declarations

You define an element in an XML Schema-based schema with the element construct, as shown here:

<xsd:element name="element_name" type="element_type"/>

You can define an element within a schema construct. The example schema document with a
top-level catalog element declaration within a schema construct is as follows:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<xsd:element name="catalog" type="catalogType" ></xsd:element>
<!-- we have yet to define a catalogType -->

</xsd:schema>

Of course, we have not yet defined catalogType. The XML Schema language defines two main
type constructs: a simple type and a complex type. Almost no meaningful document structure is
feasible without the use of a complex type, so that is what we will cover next.



CHAPTER 1 INTRODUCING XML AND JAVA

Complex Type Declarations

A complexType constrains elements and attributes in an XML document. You can specify a complexType
in a schema construct or an element declaration. If you specify a complexType in a schema construct,
the complexType is referenced in an element declaration with a type attribute. In the example schema,
you can define the catalogType type as a complex type as shown here:

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<xsd:element name="catalog" type="catalogType" ></xsd:element>
<xsd:complexType name="catalogType" >
</xsd:complexType>

</xsd:schema>

Sequence Model Groups

You can also define an element within a sequence model group, which, as the name implies, defines
an ordered list of one or more elements. In the example schema, say you want to allow a journal
element in the catalogType complex type; you'd use a sequence model group as shown here:

<xsd:complexType name="catalogType" >
<xsd:sequence>
<xsd:element ref="journal" />
<!-- we have yet to define a global journal element -->
</xsd:sequence>
</xsd:complexType>

The journal element declaration within the catalogType complex type uses a ref attribute to
refer to a global journal element definition. Of course, we have not yet defined any global journal
element, so we will do that next, using a choice model group.

Choice Model Groups

You can also define an element within a choice model group, which defines a choice of elements
from which one element may be selected. In the example schema document, say you want to define a
global journal element that offers a choice between article and research elements, as shown here:

<xsd:element name="journal" >
<xsd:complexType>
<xsd:choice>
<xsd:element name="article" type="paperType" />
<xsd:element name="research" type="paperType" />
<!-- we have yet to define a paperType type -->
</xsd:choice>
</xsd:complexType>
</xsd:element>

All Model Groups

You can also define an element within an all model group, which defines an unordered list of
elements, all of which can appear in any order, but each element may be present at most once. In the
example schema document, you can define the paperType complex type with an all model group, as
shown here:

13



14

CHAPTER 1 INTRODUCING XML AND JAVA

<xsd:complexType name="paperType" >
<xsd:all>
<xsd:element name="title" type="titleType" />
<xsd:element name="author" type="authorType" />
<!-- we have yet to define titleType and authorType -->
</xsd:all>
</xsd:complexType>

Named Model Groups

You can define all the model groups you've seen so far—sequence, choice, and all—within a named
model group. The named model group in turn can be referenced in complex types and in other
named model groups. This promotes the reusability of model groups. For example, you could define
paperGroup as a named model group and refer to it in the paperType complex type using the ref
attribute, as shown in the following example:

<?xml version="1.0"' encoding="UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="paperType">
<xsd:group ref="paperGroup" />
</xsd:complexType>
<xsd:group name="paperGroup">
<xsd:all>
<xsd:element ref="title" />
<xsd:element ref="author" />
</xsd:all>
</xsd:group>
</xsd:schema>

Cardinality

You specify the cardinality of a construct with the minOccurs and maxOccurs attributes. You can
specify cardinality on an element declaration or on the sequence, choice, and all model groups, as
long as these groups are specified outside a named model group. You can specify named model
group cardinality when the group is referenced in a complex type. The default value for both the
minOccurs and maxOccurs attributes is 1, which implies that the default cardinality of any construct is
1, if no cardinality is specified.

If you want to specify that a catalogType complex type should allow zero or more occurrences
of journal elements, you can do so as shown here:

<xsd:complexType name="catalogType" >
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" ref="journal" />
</xsd:sequence>
</xsd:complexType>

Attribute Declarations

You can specify an attribute declaration in a schema with the attribute construct. You can specify
an attribute declaration within a schema or a complexType. For example, if you want to define the
title and publisher attributes in the catalogType complex type, you can do so as shown here:



CHAPTER 1 INTRODUCING XML AND JAVA

<xsd:complexType name="catalogType">
<xsd:sequence>
<xsd:element ref="journal" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="title" type="xsd:string" use="required" />
<xsd:attribute name="publisher" type="xsd:string"
use="optional" default="Unknown" />
</xsd:complexType>

An attribute declaration may specify a use attribute, with a value of optional or required. The
default use value for an attribute is optional. In addition, an attribute can specify a default value
using the default attribute, as shown in the previous example. When an XML document instance
does not specify an optional attribute with a default value, an attribute with the default value is
assumed during document validation with respect to its schema. Clearly, an attribute with a default
value cannot be a required attribute.

Attribute Groups

An attributeGroup construct specifies a group of attributes. For example, if you want to define the
attributes for a catalogType as an attribute group, you can define a catalogAttrGroup attribute group,
as shown here:

<xsd:attributeGroup name="catalogAttrGroup" >
<xsd:attribute name="title" type="xsd:string" use="required" />
<xsd:attribute default="Unknown" name="publisher"
type="xsd:string" use="optional" />
</xsd:attributeGroup>

You can specify an attributeGroup in a schema, complexType, and attributeGroup. You can
specify the catalogAttrGroup shown previously within the schema element and can reference it using
the ref attribute in the catalogType complex type, as shown here:

<xsd:complexType name="catalogType" >
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" ref="journal" />
</xsd:sequence>
<xsd:attributeGroup ref="catalogAttrGroup" />
</xsd:complexType>

Simple Content

A simpleContent construct specifies a constraint on character data and attributes. You specify a
simpleContent construct in a complexType construct. Two types of simple content constructs exist:
an extension and a restriction.

You specify simpleContent extension with an extension construct. If you want to define an
authorType as an element that allows a string type in its content and also allows an email attribute,
you can do so using a simpleContent extension that adds an email attribute to a string built-in type,
as shown here:

<xsd:complexType name="authorType" >
<xsd:simpleContent>
<xsd:extension base="xsd:string" >
<xsd:attribute name="email" type="xsd:string" use="optional" />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

15



16

CHAPTER 1

INTRODUCING XML AND JAVA

You specify a simpleContent restriction with a restriction element. If you want to define a
titleType as an element that allows a string type in its content but restricts the length of this content
to between 10 to 256 characters, you can do so using a simpleContent restriction that adds the
minLength and maxLength constraining facets to a string base type, as shown here:

<xsd:complexType name="titleType" >
<xsd:simpleContent>

<xsd:restriction

base="xsd:string" >

<xsd:minLength value="10" />

<xsd:maxLength value="256" />
</xsd:restriction>
</xsd:simpleContent>

</xsd:complexType>

Constraining Facets

Constraining facets are a powerful mechanism for restricting the content of a built-in simple type.
We already looked at the use of two constraining facets in the context of a simple content construct.
Table 1-2 has a complete list of the constraining facets. These facets must be applied to relevant built-in
types, and most of the time the applicability of a facet to a built-in type is fairly intuitive. For complete
details on the applicability of facets to built-in types, please consult XML Schema Part 2: Datatypes.

Table 1-2. Consiraining Facets

Facet Description Example Value
length Number of units of length 8
minLength Minimum number of units 20
of length, say m1
maxLength Maximum number of units 200 (Greater or equal to m1)
of length
pattern A regular expression [0-9]{5} (for first part of a U.S. ZIP code)
enumeration An enumerated value Male
whitespace Whitespace processing preserve (asis), replace (new line and
tab with space), or collapse (contiguous
sequences of space into a single space)
maxInclusive Inclusive upper bound 255 (for a value less than or equal to 255)
maxExclusive Exclusive upper bound 256 (for a value less than 256)
minExclusive Exclusive lower bound 0 (for a value greater than 0)
minInclusive Inclusive lower bound 1 (for a value greater than or equal to 1)
totalDigits Total number of digits in a 8
decimal value
fractionDigits Total number of fractions 2

digits in a decimal value




CHAPTER 1 INTRODUCING XML AND JAVA

Complex Content

A complexContent element specifies a constraint on elements (including attributes). You specify a
complexContent construct in a complexType element. Just like in the case of simple content, complex
content has two types of constructs: an extension and a restriction.

You specify a complexContent extension with an extension element. If, for example, you want to
add a webAddress attribute to a catalogType complex type using a complex content extension, you
can do so as shown here:

<xsd:complexType name="catalogTypeExt" >
<xsd:complexContent>
<xsd:extension base="catalogType" >
<xsd:attribute name="webAddress" type="xsd:string" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

You specify a complexContent restriction with a restriction element. In a complex content
restriction, you basically have to repeat, in the restriction element, the part of the base model you
want to retain in the restricted complex type. If, for example, you want to restrict the paperType
complex type to only a title element using a complex content restriction, you can do so as shown here:

<xsd:complexType name="paperTypeRes" >
<xsd:restriction base="paperType" >
<xsd:all>
<xsd:element name="title" type="titleType" />
</xsd:all>
</xsd:restriction>
</xsd:complexType>

A complex content restriction construct has a fairly limited use.

Simple Type Declarations

A simpleType construct specifies information and constraints on attributes and text elements. Since
XML Schema has 44 built-in simple types, a simpleType is either used to constrain built-in datatypes
or used to define a list or union type. If you wanted, you could have specified authorType as a simple
type restriction on a built-in string type, as shown here:

<xsd:element name="authorType" >
<xsd:simpleType>
<xsd:restriction base="xsd:string" >
<xsd:minLength value="10" />
<xsd:maxLength value="256" />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

List

A list construct specifies a simpleType construct as a list of values of a specified datatype. For example,
the following is a simpleType that defines a list of integer values in a chapterNumbers element:

17



18

CHAPTER 1 INTRODUCING XML AND JAVA

<xsd:element name="chapterNumbers" >
<xsd:simpleType>

<xsd:1list itemType="xsd:integer" />
</xsd:simpleType>
</xsd:element>

The following example is an element corresponding to the simpleType declaration defined
previously:

<chapterNumbers>8 12 11</chapterNumbers>

Union

A union construct specifies a union of simpleTypes. For example, if you first define chapterNames as a
list of string values, as shown here:

<xsd:element name="chapterNames">
<xsd:simpleType>

<xsd:list itemType="xsd:string"/>
</xsd:simpleType>
</xsd:element>

then you can specify a union of chapterNumbers and chapterNames as shown here:

<xsd:element name="chapters" >
<xsd:simpleType>
<xsd:union memberTypes="chapterNumbers, chapterNames" />
</xsd:simpleType>
</xsd:element>

This is an example element corresponding to the chapters declaration defined previously:
<chapters>8 XSLT 11</chapters>

Of course, since list values may not contain any whitespace, this example is completely
contrived because chapter names in real life almost always contain whitespace.

Schema Example Document

Based on the preceding discussion, Listing 1-3 shows the complete example schema document for
the example XML document in Listing 1-2.

Listing 1-3. Complete Example Schema Document

<?xml version="1.0"' encoding='UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="catalog" type="catalogType" />
<xsd:complexType name="catalogType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" ref="journal" />
</xsd:sequence>
<xsd:attribute name="title" type="xsd:string" use="required"/>
<xsd:attribute default="Unknown" name="publisher" type="xsd:string" />
</xsd:complexType>



CHAPTER 1 INTRODUCING XML AND JAVA

<xsd:element name="journal">
<xsd:complexType>
<xsd:choice>
<xsd:element name="article" type="paperType"/>
<xsd:element name="research" type="paperType"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="paperType">
<xsd:all>
<xsd:element name="title" type="titleType"/>
<xsd:element name="author" type="authorType"/>
</xsd:all>
</xsd:complexType>
<xsd:complexType name="authorType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="email" type="xsd:string" />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="titleType">
<xsd:simpleContent>
<xsd:restriction base="xsd:string">
<xsd:minLength value="10"/>
<xsd:maxLength value="256"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
</xsd:schema>

Introducing the Eclipse IDE

We developed the Java applications in this book using the Eclipse 3.1.1 integrated development
environment (IDE), which is by far the most commonly used IDE among Java developers. You can
download itfrom http://www.eclipse.org/. The following sections are a quick introduction to Eclipse;
we cover all you need to know to build and execute the Java applications included in this book. In
particular, we offer a quick tutorial on how to create a Java project and how to create a Java applica-
tion within a Java project.

Creating a Java Project

To create a Java project in Eclipse, select File » New » Project. In the New Project dialog box, select
Java Project, and then click Next, as shown in Figure 1-1.

19



20 CHAPTER 1 INTRODUCING XML AND JAVA

& New Project

s .'. ll
Select a wizard

Create a Java project

‘Wizards:

@ Jawva Project
# Java Project from Existing Ant Buildfile

# Plug-in Project

WS

Java

@ Jawva Project

£ Java Project From Existing Ant Buildfils

+ Flug-in Development
-2 Simple

= Back. IJ\Next> I Finiish

Cancel

Figure 1-1. Selecting the New Project Wizard

On the Create a Java Project screen, specify a project name, such as Chapter1. In the Project
Layout section, select Create Separate Source and Output Folders, and click Next, as shown in Figure 1-2.



CHAPTER 1

& New Java Project
Create a Java project J
Create a Java project in the workspace or in an external location, Z ¥a

Project name: Chapter1|

—Contents
' Create new project in workspace

" Create project from existing source

Ditectory: | CiiDocuments and SettingsiDeepak Yohralworkspace\Chapte Browse. ., |

— IDK. Compliance
% |se default compiler compliance (Currently 1,43 Confiqure default. ..

" Use a project specific compliance: |14

—Project layout
" Use project Folder as root for sources and class files

(¥ Create separate source and output Folders Configure default. ..

< Back | [Mext = | Finish I Cancel

Figure 1-2. Creating a Java project

INTRODUCING XML AND JAVA

On the Java Settings screen, add the required project libraries under the Libraries tab, and click

Finish, as shown in Figure 1-3.

21



22 CHAPTER 1 INTRODUCING XML AND JAVA

& New Java Project T x|

Jawva Settings J

Define the Java build settings. Z ¥a

[ Source |B Projects I =, Libraries | %% Order and Export

B | at im u @
E'bd Chapter1

(8 src
w Details

5‘9 Add project 'Chapter1’ to build path: Add the project to the build path if the project is
the root of packages and source files. Entries on the build path are visible to the
compiler and used For building.

™ allow cutput Folders For source Folders

Defaulk output Folder:

| Chapter1fbuild Browse. .. |

< Back | Iexk = | [+, Finish I Cancel

Figure 1-3. Accessing the Java Settings screen

This adds a Java project to the Package Explorer in Eclipse, as shown in Figure 1-4.

[+, JRE System Library [JRES.0]

Figure 1-4. Viewing the Java project in the Package Explorer



CHAPTER 1 INTRODUCING XML AND JAVA 23

Setting the Build Path

The build path of a Java project includes the JAR files and package folders required to compile
various Java class files in a project. To add JAR files and package folders to a project’s build path,
select the project node on the Package Explorer tab, and select Project » Properties. In the Properties
dialog box, select the Java Build Path node, add the external JAR (external to project) files by clicking
the Add External JARs button, and add the internal JAR files by clicking the Add JARs button. You can
add package folders and libraries with the Add Class Folders and Add Library buttons, respectively.
The JARs and package folders in the project build path appear in the Java Build Path window. As an
example, it is assumed that xerces. jar is an external JAR file available at the C:\JDOM\ jdom-1.0\1ib
path, and it is added to the Java Build Path window with the Add External JARs button, as shown in
Figure 1-5.

& Properties for Chapterl 3 ;Iglll

[tvpefiter text =] Java Build Path CR S

- Builders 2 Source I 1=* Projects = Libraries | %4 order and Export I

;: g Bl JARs and class Folders on the build path:
[ Java Code Style

[ Java Compiler &) xerces.jar - C:{IDOMijdom-1,04ib Add JARs. .. |

‘... Javadac Location [, JRE System Library [JRES.0]

. Project References Add External JARs. .
Add Yariable. .. |
Add Library. .. |

Add Class Folder. .. |

Edit... |
Remave |

Default output Folder:

Chapter1fbuild Browse. .. |
[: 074 | Cancel |

Figure 1-5. Setting the Java build path

Creating a Java Package

To create a Java package within a Java project, select the project node in the Package Explorer, and
select File » New » Package. In the New Java Package dialog box, specify a package name, such as
com.apress.chapteri, and click the Finish button, as shown in Figure 1-6.



24 CHAPTER 1 INTRODUCING XML AND JAVA

& New Java Package x|
Java Package
Create a Java package, £

Creates folders corresponding ko packages,

Source Folder: | Chapterl/src Browse. .. |

Mame: | com.apress.chapter1|

l: Finish I Cancel

Figure 1-6. Creating a Java package

This adds a Java package to the Java project, as shown in Figure 1-7.

=4, JRE System Library [JRES.0]
ﬁ:u werces.jar - CIDOMijdom-1.0ib

Figure 1-7. Viewing the Java package in Package Explorer

Creating a Java Class

To create a Java class, right-click a package node in the Package Explorer, and select New » Class, as

shown in Figure 1-8.

On the New Java Class screen, specify the class name, class modifiers, and interfaces implemented,

and then click the Finish button, as shown in Figure 1-9.



CHAPTER 1

INTRODUCING XML AND JAVA

E'bd Chapter1
B2 src

N =0
=\ RE 5ystem Lbrary [RE ¥ Projet...

& werces.jar - CAI00Md: Open in New Window

H;‘,? Package
Open Type Hierarchy 7
Copy Chrl+C £ Interface
‘= Paste Chrl+y & Enum
¥ Delete Delete (E Annokation
Build Path ’ " Source Folder
Source Al+shift+s b
Falder
Refactar Ale+shift+T * &
| File
25 Import

= Untitled Text File

i £ other..

Run As
Debug As
Team
Compare With

Restore from Local History...

Chrl+

Properties

Ale+Enter

Figure 1-8. Creating new Java class

& New Java Class

Jawva Class

Create a new Java class,

Source Folder: | Chapterl/src

Browse. ..

Package: | com,apress.chapterl

Browse. ..

™ Enclosing type: |

i}

Browse. .,

Mame: | Class1|
Modifiers: ' public  default € private. € protected
[ abstract [ final [~ static

Superclass: | java.lang. Object

Browse. ..

J

Interfaces:

‘which method stubs would you like to create?
IV public static void main(Stringl] args)
™ Constructars from superclass
¥ Inherited abstract methods

Do you want to add comments as configured in the properties of the current project?

[T Generate comments

Add...

[

Remayve

g

Figure 1-9. Specifying Java class settings

25



26 CHAPTER 1 INTRODUCING XML AND JAVA

This adds a Java class to the Java project, as shown in Figure 1-10.

& Java - Class1.java - Eclipse SDK 10l =l
File Edit Source Refactor Mavigate Search Project Run  Window Help
Jfﬁ' @|.H__Tv Jﬁ'ﬁ'%'J@ﬂ?@'J@@nj 4= T5 %¥Debug | &11ava
(615 e
[# Package Explarer &2 Hierarchy| == S = B[ 5= outline 52 =0
S | = <'===D T 1 !package com.apress.chapter | 12w W e
E'bd Chapter1 : 2  com.apress.chapterl
: F=publi 1. Cl 1
E‘B o P ic class assl | o Class1
E|EE com, apress,chapterl 4 ef maingStringl[ 1)
(- [J] Class1.java 5= i
=, JRE System Library [JRES.0] 3 * @param args
& werces.jar - CAI0D0Mjdorn-1.0lib 2 g =
=i public static void mai;
=] // TODOD Auto-gener;
10
11 i
1z =
| | »
Problems|Javadoc|DecIaration (E Console &3 i (g
A console is not available,
[ l | ‘Writable | Smart Insert | ik

Figure 1-10. Viewing the Java class in the Package Explorer

Running a Java Application

Torun aJava application, right-click the Java class in the Package Explorer, and select Run As » Run,
as shown in Figure 1-11.



CHAPTER 1 INTRODUCING XML AND JAVA 27

& Java - Classl.java - Eclipse SDK L _|EI|1|
File Edit Source Refactor Mavigate Search Project Run  Window Help
[ mi = | |3 -0 - Q- |BHE- | &5 | E #%Debug | &

i ] a1 3 E ebug i Java

[1] Class1.java B2 = B[ 5= outline 52 =

1 package com.apress.chapter;l laz & }s\s @ h{' o
2

E'bd Chapter1 #  com.apress.chapterl

= sre 3-public class Classl { e
=-f3 com.apress.chapterl 4 - @S maingStringl[ 1)
i L
4 &[0 8 - = Mew v
B4, JRE System Library | args
zﬂ werces,jar - CAJIDOT Open F3
Open With p ptic void mai:
Open Type Hierarchy F4 0 Auto-gener: =
Chrl+C
Chrl+y
¥ Delete Delete
Build Path 3
Source Alt+shife+5 ¥
Refactor Ale+shift+T *
g Import...
P
<y Export... _ILI
References 3 J r
Declarations 3 HA(E e 4B -5 0
Q§' Refresh FS

3
Debluee Ji 2 JUnit Plug-in Test Alt+Shife+3, P
Team 3
5 Ju 3 JUnit Test Ale+shift+x, T
Compare With 3 e o .
Replace With » 177 4 SWT Application Ale+shift+x, 5

Restore from Local History.,..
[ l com.apress,chapter Properties Alt+Enter

Figure 1-11. Running a Java application

In the Run dialog box, select a Java Application configuration, or create a new Java Application
configuration by selecting Java Application » New, as shown in Figure 1-12.



28 CHAPTER 1 INTRODUCING XML AND JAVA

Create, manage, and run configurations

Run a Java application

Configurations:

& Eclipse Application
5] Java Applet
— i

] 2 Aoplicay—,
3 Luplicate

¥ JUnit Plug-in

Perspectives

Delete

"MNone",

Debug: IDebug - l
Run: INone x l

se settings associate a perspective with Java Application launch configurations, &
erent perspective may be associated with each supported launch mode, and can
ionally be opened when a configuration is launched or when an application suspends
the Debug preferences, To indicate that a perspective should not be opened, select

Restore Defaults |

Mew Delete Ay

| Revert |

Close |

Figure 1-12. Creating a Java Application configuration

This creates a Java Application configuration. If any application arguments are to be set, specify
the arguments on the Arguments tab. To specify the project JRE, select the JRE tab. The JAR files and
packages folders in the build path are also automatically included in the Java classpath. You can add
classpath JAR files and package folders on the Classpath tab. To run a Java application, click Run, as

shown in Figure 1-13.




CHAPTER 1 INTRODUCING XML AND JAVA 29

x|
Create, manage, and run configurations —
Run a Java application { ! ;a
Configurations: Mame: |Classl
------ & Eclipse Application
-] Java Applet = - =
[T] Java Application © main |f"]= Argurnents I =i JRE I % Classpath I B Source I P Envirar 4 I L
7] Class1 —Project:
- Ju Junit
Chapter1 Browse. ..
78 Unit Plugein Test | chapter

...... o] SWT Application

—Main class

Search...

| com.apress.chapterl,Class1 |

™ Include libraries when searching For & main class

™ Include inherited mains when searching For a main class

- Skop in main

Mew Delete Apply | Revert |

I}Run Close |

Figure 1-13. Configuring and running a Java application

Importing a Java Project

The Java projects for the applications in this book are available from the Apress website (http://www.
apress.com). The easiest way to run these applications is to download and import these Java projects
into Eclipse. Before we cover how to import the Chapter1 project, you must delete the Chapter1 project
you just created, including its contents, by selecting it and hitting Delete key. Be sure to choose the

option to delete the contents when prompted.

To import a Java project, select File » Import. In the Import dialog box, select Existing Projects
into Workspace, and click Next, as shown in Figure 1-14.
In the Import Projects dialog box, select a project directory with Browse button. Select a directory in

the Browse for Folder dialog box, and click OK, as shown in Figure 1-15. Click Finish to import the
project directory.



30 CHAPTER 1 INTRODUCING XML AND JAVA

& Import

Select "
Create new projects from an archive file or directory, This does not copy the project into the workspace, | E - ﬁ I

Select an import source:

B, archive file
gfcheckout Projects from CYS

LikExternal Features

’J‘gf,ExternaI Plug-ins and Fragments
[ File system

Elpreferences

%},Team Project Set

= Back I hext = I Finiisti Cancel
4%

Figure 1-14. Importing a project

Select root directory of the projects to import

: T ‘Wwebapplication1 ;I
L ‘Wwebapplicationz
- workspace
71 metadata

{:I Chapters LI

Folder: I Chapterl

[8]4 |: I Cancel | Mew Falder |

4

Figure 1-15. Selecting a directory




CHAPTER 1 INTRODUCING XML AND JAVA

This imports a Java project into the Eclipse IDE, as shown in Figure 1-16.

-2 src
+|- B}, JRE System Library [JRES.0]
) xerces.jar - CIDOMdam-1.01ib

Figure 1-16. Viewing the project in the Package Explorer

Summary

In this chapter, we noted the different APIs that we will cover in detail in subsequent chapters and
offered quick primers on XML and XML Schema. We also introduced the Eclipse IDE, which was
used to build and execute all the example applications included in this book. In the next chapter, we
will discuss XML parsing in detail using the DOM, SAX, and StAX APIs.

31






CHAPTER 2

Parsing XML Documents

An XML document contains structured textual information. We covered the syntactic rules that
define the structure of a well-formed XML document in the primer on XML 1.0 in Chapter 1. This
chapter is about parsing the structure of a document to extract the content information contained
in the document.

We'll start by discussing various objectives for parsing an XML document and by covering
various parsing approaches compatible with these objectives. We’ll discuss the advantages and
disadvantages of each approach and the appropriateness of them for particular applications. We’ll
then discuss specific parsing APIs that implement these approaches and are defined within JAXP 1.3,
which is included in J2SE 5.0, and Streaming API for XML (StAX), which is included in J2SE 6.0. We’ll
explain each API through code examples. Finally, we’ll offer instructions on how to build and execute
these code examples within the Eclipse IDE.

Objectives of Parsing XML

Parsing is the most fundamental aspect of processing an XML document. When an application
parses an XML document, typically it has three distinct objectives:

e To ensure that the document is well-formed
* To check that the document conforms to the structure specified by a DTD or an XML Schema

e To access, and maybe modify, various elements and attributes specified in the document, in
a manner that meets the specific needs of an application

All applications share the first objective. The second objective is not as pervasive as the first but
is still fairly standard. The third objective, not surprisingly, varies from application to application.
Prompted by the diverse access requirements of various applications, different parsing approaches
have evolved to satisfy these requirements. To date, you can take one of three distinct approaches to
parsing XML documents:

e DOM! parsing
¢ Push parsing
e Pull parsing

In the next section, we will give an overview of these three approaches and then offer a compar-
ative analysis of them.

1. You can find the Document Object Model (DOM) Level 3 Core specification at http://www.w3.0rg/TR/
DOM- Level-3-Core/. 33



34 CHAPTER 2 PARSING XML DOCUMENTS

Overview of Parsing Approaches

In the following sections, we will give you an overview of the three major parsing approaches from a
conceptual standpoint. In later sections, we will discuss specific Java APIs that implement these
approaches. We will start with the DOM approach.

DOM Approach

The Document Object Model (DOM) Level 3 Core specification specifies platform- and language-neutral
interfaces for accessing and manipulating content and specifies the structure of a generalized
document. The DOM represents a document as a tree of Node objects. Some of these Node objects
have child node objects; others are leaf objects with no children.

To represent the structure of an XML document, the generic Node type is specialized to other
Node types, and each specialized node type specifies a set of allowable child Node types. Table 2-1
explains the specialized DOM Node types for representing an XML document, along with their allowable
child Node types.

Table 2-1. Specialized DOM Node Types for an XML Document

Specialized Node Type

Description

Allowable Child Node Types

Document Represents an DocumentType, ProcessingInstruction,
XML document Comment, Element(maximum of 1)
DocumentFragment Represents part of an XML Element, ProcessingInstruction, Comment,
document Text, CDATASection, EntityReference
DocumentType Represents a DTD for a No children
document
EntityReference Represents an Element, ProcessingInstruction, Comment,
entity reference Text, CDATASection, EntityReference
Element Represents an element Element, ProcessingInstruction, Comment,
Text, CDATASection, EntityReference
Attr Represents an attribute Text, EntityReference

ProcessingInstruction

Represents a processing
instruction

No children

Comment Represents a comment No children
Text Represents text, including No children
whitespace
CDATASection Represents a CDATA section No children
Entity Represents an entity Element, ProcessingInstruction, Comment,
Text, CDATASection, EntityReference
Notation Represents a notation No children




CHAPTER 2 PARSING XML DOCUMENTS

The Document specialized node type is somewhat unique in that at most only one instance of this
type may exist within an XML document. It is also worth noting that the Document node type is a
specialized Element node type and is used to represent the root element of an XML document. Text
node types, in addition to representing text, are also used to represent whitespace in an XML document.

Under the DOM approach, an XML document is parsed into a random-access tree structure in
which all the elements and attributes from the document are represented as distinct nodes, with
each node instantiated as an instance of a specialized node type. So, for example, under the DOM
approach, the example XML document shown in Listing 2-1 would be parsed into the tree structure
(annotated with specialized node types) shown in Figure 2-1.

Listing 2-1. Example XML Document

<?xml version="1.0" encoding="UTF-8"?>
<catalog title="OnJava.com" publisher="0'Reilly">
<journal date="January 2004">
<article>
<title>Data Binding with XMLBeans</title>
<author>Daniel Steinberg</author>
</article>
</journal>
</catalog>

[D] #document  Document
= [€]catalog Element
[@] publisher=C'Reily Attr
[@] title=CnJawa.com Attr
) #text Text
=[] journal Element
[@] date=January 2004 Attr
B #text Text
= [&] article Element
) #text Text
= [&]title Element
) #text Text
) #text Text
= [&] author Element
) #text Text
B #text Text
) #text Text
) #text Text

Figure 2-1. Annotated DOM tree for example XML document

The DOM approach has the following notable aspects:

* Anin-memory DOM tree representation of the complete document is constructed before the
document structure and content can be accessed or manipulated.

* Document nodes can be accessed randomly and do not have to be accessed strictly in docu-
ment order.

e Random access to any tree node is fast and flexible, but parsing the complete document
before accessing any node can reduce parsing efficiency.

35



36

CHAPTER 2 PARSING XML DOCUMENTS

¢ For large documents ranging from hundreds of megabytes to gigabytes in size, the in-memory
DOM tree structure can exhaust all available memory, making it impossible to parse such
large documents under the DOM approach.

¢ Ifan XML document needs to be navigated randomly or if the document content and structure
needs to be manipulated, the DOM parsing approach is the most practical approach. This is
because no other approach offers an in-memory representation of a document, and although
such representation can certainly be created by the parsing application, doing so would be
essentially replicating the DOM approach.

¢ An API for using the DOM parsing approach is available in JAXP 1.3.

Push Approach

Under the push parsing approach, a push parser generates synchronous events as a document is
parsed, and these events can be processed by an application using a callback handler model. An API
for the push approach is available as SAX 2 2.0, which is also included in JAXP 1.3. SAX is a read-only
API. The SAX API is recommended if no modification or random-access navigation of an XML document
is required.

The SAX 2.0 API defines a ContentHandler interface, which may be implemented by an applica-
tion to define a callback handler for processing synchronous parsing events generated by a SAX
parser. The ContentHandler event methods have fairly intuitive semantics, as listed in Table 2-2.

Table 2-2. SAX 2.0 ContentHandler Event Methods

Method Notification

startDocument Start of a document

startElement Start of an element

characters Character data

endElement End of an element

endDocument End of a document
startPrefixMapping Start of namespace prefix mapping
endPrefixMapping End of namespace prefix mapping
skippedEntity Skipped entity
ignorableWhitespace Ignorable whitespace

processingInstruction

Processing instruction

2. You can find information about Simple API for XML at http://www.saxproject.org/.



CHAPTER 2 PARSING XML DOCUMENTS

In addition to the ContentHandler interface, SAX 2.0 defines an ErrorHandler interface, which
may be implemented by an application to receive notifications about errors. Table 2-3 lists the
ErrorHandler notification methods.

Table 2-3. SAX 2.0 ErrorHandler Notification Methods

Method Notification

fatalError Violation of XML 1.0 well-formed constraint
error Violation of validity constraint

warning Non-XML-related warning

An application should make no assumption about whether the endDocument method of the
ContentHandler interface will be called after the fatalError method in the ErrorHandler interface
has been called.

Pull Approach

Under the pull approach, events are pulled from an XML document under the control of the appli-
cation using the parser. StAX is similar to the SAX API in that both offer event-based APIs. However,
StAX differs from the SAX API in the following respects:

e Unlike in the SAX API, in the StAX AP], it is the application rather than the parser that controls
the delivery of the parsing events. StAX offers two event-based APIs: a cursor-based API and
an iterator-based API, both of which are under the application’s control.

e The cursor API allows a walk-through of the document in document order and provides the
lowest level of access to all the structural and content information within the document.

e Theiterator API is similar to the cursor API but instead of providing low-level access, it provides
access to the structural and content information in the form of event objects.

e Unlike the SAX AP, the StAX API can be used both for reading and for writing XML documents.

Cursor API

Key points about the StAX cursor API are as follows:

* The XMLStreamReader interface is the main interface for parsing an XML document. You can
use this interface to scan an XML document’s structure and contents using the next () and
hasNext () methods.

e The next() method returns an integer token for the next parse event.

* Depending on the next event type, you can call specific allowed methods on the XMLStreamReader
interface. Table 2-4 lists various event types and the corresponding allowed methods.

37



38

CHAPTER 2 PARSING XML DOCUMENTS

Table 2-4. StAX Cursor API Event Types and Allowed Methods

Event Type

Allowed Methods

Any event type

START_ELEMENT

ATTRIBUTE
NAMESPACE
END_ELEMENT

CHARACTERS
CDATA

COMMENT

SPACE
START_DOCUMENT

END_DOCUMENT
PROCESSING INSTRUCTION
ENTITY_REFERENCE

DTD

getProperty(), hasNext(), require(), close(),
getNamespaceURI(), isStartElement(), isEndElement(),
isCharacters(), isWhiteSpace(), getNamespaceContext(),
getEventType(), getLocation(), hasText(), hasName()

next(), getName(), getLocalName(), hasName(), getPrefix(),
getAttributeXXX(), isAttributeSpecified(), getNamespaceXXX(),
getElementText(), nextTag()

next(), nextTag(), getAttributeXXX(), isAttributeSpecified()
next(), nextTag(), getNamespaceXXX()

next(), getName(), getLocalName(), hasName(), getPrefix(),
getNamespaceXXX(), nextTag()

next(), getTextXXX(), nextTag()
next(), getTextXXX(), nextTag()
next(), getTextXXX(), nextTag()
next(), getTextXXX(), nextTag()

next(), getEncoding(), getVersion(), isStandalone(),
standaloneSet (), getCharacterEncodingScheme(), nextTag()

close()

next(), getPITarget(), getPIData(), nextTag()
next(), getLocalName(), getText(), nextTag()
next(), getText(), nextTag()

Iterator API

Key points about the StAX iterator API are as follows:

e The XMLEventReader interface is the main interface for parsing an XML document. You can
use this interface to iterate over an XML document’s structure and contents using the
nextEvent() and hasNext() methods.

¢ The nextEvent() method returns an XMLEvent object.

* The XMLEvent interface provides utility methods for determining the next event type and for
processing it appropriately.

The StAX API is recommended for data-binding applications, specifically for the marshaling
and unmarshaling of an XML document during the bidirectional XML-to-Java mapping process.
A StAX API implementation is included in J2SE 6.0.



CHAPTER 2 PARSING XML DOCUMENTS

Comparing the Parsing Approaches

Each of the three approaches discussed offers advantages and disadvantages and is appropriate for
particular types of applications. Table 2-5 compares the three parsing approaches.

Table 2-5. DOM, SAX, and StAX Comparison

Parsing Advantages Disadvantages Suitable Application

Approach

DOM Ease of use, navigation, = Must parse entire Applications that modify
random access, and document, memory structure and content of
XPath support intensive an XML document, such as

visual XML editors*

SAX Low memory No navigation, Read-only XML applications,

consumption, efficient  no random access, such as document validation
no modification

StAX Ease of use, low memory No random access, Data binding, SOAP
consumption, applica-  no modification message processing
tion regulates parsing,
filtering

* We've written such an editor, which is available at http://www.nubean.com.

Before you see some code examples of the three parsing APIs, we’ll show how to create and
configure an appropriate Eclipse project.

Setting Up an Eclipse Project

In the following sections, we will show how to set up an Eclipse project and populate it with the contents
needed to build and execute code examples related to the three parsing approaches discussed in this
chapter. Even though in later sections we will discuss each parsing approach separately, here we will
show how to prepare the Eclipse project for all three parsing approaches at once.

Example XML Document

To take any of the parsing approaches, the first element you need is an XML document. To that end,
you can use the example XML document shown in Listing 2-2.

Listing 2-2. catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog title="OnJava.com" publisher="0'Reilly">
<journal date="January 2004">
<article>
<title>Data Binding with XMLBeans</title>
<author>Daniel Steinberg</author>
</article>
</journal>

39



40 CHAPTER 2 PARSING XML DOCUMENTS

<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>

</journal>

</catalog>

J2SE, Packages, and Classes

To build and execute these examples, you need to make sure you have the J2SE 5.0 software devel-
opment kit (SDK)? and the J2SE 6.0 SDK (code-named Mustang?) installed on your machine.

Next, download the Chapter2 project from the Apress website (http://www.apress.com) and
import it, as explained in detail in Chapter 1. Importing the project is the quickest way to run the
example applications, because all the packages and files in the project get created automatically and
the Java build path gets set automatically. Please verify that the Java build path is as shown in
Figure 2-2 and the overall project structure is as shown in Figure 2-3.

& Properties for Chapter2

|tvpe Filker text 'l Jawva Build Path

=1ol x|
SR

-Info

3 Build Path JaRs and class folders on the build path:

-Builders 2 Source I =* Projects = Libraries | %4 order and Export I

- Java Code Style
- Java Compiler [, JRE System Library [JRES.0]

i Javadoc Location -, IRE System Library [JRE6.0]

Project References

Add JaRs... |
Add External JaRs... |
Add Yariable. .. |
Add Library. .. |
Add Class Folder. .. |

Edit. .. |
Remayve |

Default output Folder:

Chapterz fbuild

Browse. .. |

Ok I Cancel |

Figure 2-2. Chapter2 project Java runtime environments (JREs)

3. You can download the J2SE 5.0 SDK from http://java.sun.com/j2se/1.5.0/download.jsp.
4. You can download the snapshot release of Mustang from https://mustang.dev.java.net/.



“ﬁg!! 5! &ﬁ Hierarchy =]

CHAPTER 2 PARSING XML DOCUMENTS

=

E...r'.

(-2, JRE System Library [JRES.0]
-2, JRE System Library [JRES.0]
|=| catalog.xml

sro
|- com.apress.dam

|1| DOMParser.java
COM, press, 5ax

|1| ShxParserApp.java
3 com.apress.stax
|1| StAxParser java

Figure 2-3. Chapter2 project directory structure

Parsing with the DOM Level 3 API

The DOM Level 3 API, which is part of the JAXP 1.3 API, represents an XML document as a tree of
DOM nodes. Each node in this tree is a specialized Node object that is an instance of one of the
specialized Node types listed in Table 2-1. The following packages and classes are essential parts of
any application that uses the DOM Level 3 API:

The classes and interfaces representing the DOM structure of an XML document are in the
org.w3c.dom package, which must be imported by an application using the DOM API.

The NodelList interface represents an ordered list of nodes. A NamedNodeMap represents an
unordered set of nodes, such as attributes of an element. Both these classes are useful in
traversing the DOM tree representing an XML document.

The XML document-parsing API is in the javax.xml.parsers package. This is an essential
package and must be imported by an application parsing an XML document using the DOM
APIL.

An application needs to import the org.xml.sax package so it can access the SAXException
and SAXParseException classes, which are used in error handling. This reference to the SAX
API within the DOM API may seem out of place. However, this reliance of the DOM API on the
SAX API is specified by JAXP 1.3 and is basically an attempt to reuse the SAX API where
appropriate.

DOM API Parsing Steps

To parse an XML document using the DOM AP]I, you need to follow these steps:

1. Create a DOM parser factory.

2. Use the parser factory to instantiate a DOM parser.
3.
4

. Access and manipulate the XML structure and content by accessing the DOM tree.

Use the DOM parser to parse an XML document and create a DOM tree.

4



42

CHAPTER 2 PARSING XML DOCUMENTS

The DocumentBuilder class implements the DOM parser. The steps to instantiate a DocumentBuilder
object are as follows:

1. Create a DocumentBuilderFactory object using the static method newInstance(). The
DocumentBuilderFactory class is a factory API for generating DocumentBuilder objects.

2. Create aDocumentBuilder object by invoking the newDocumentBuilder () static method on the
DocumentBuilderFactory object.

The DocumentBuilder parser creates an in-memory DOM structure from an XML document. If
you want to handle validation errors during parsing, you need to define a class that implements the
ErrorHandler interface shown in Table 2-3 and set an instance of this error handler class on the parser.
Listing 2-3 shows an example class that implements the ErrorHandler interface.

Listing 2-3. Implementing ErrorHandler

class ErrorHandlerImpl implements org.xml.sax.ErrorHandler {
public void error(SAXParseException exception)
throws SAXException{
// application-specific logic

public void fatalError(SAXParseException exception)
throws SAXException{
// application-specific logic

}

public void warning(SAXParseException exception)
throws SAXException{
// application-specific logic

}

Listing 2-4 shows the complete code sequence for creating a DOM parser object that will validate a
document and use an instance of the ErrorHandlerImpl class for error handling.

Listing 2-4. Complete Code Sequence to Instantiate the Factory

//Create a DocumentBuilderFactory

DocumentBuilderFactory factory=DocumentBuilderFactory.newInstance();
//Create a DocumentBuilder

DocumentBuilder documentBuilder=factory.newDocumentBuilder();
//Create and set an ErrorHandler

ErrorHandlerImpl errorHandler=new ErrorHandlerImpl();
documentBuilder.setErrorHandler (errorHandler);

A parser can parse an XML document from a File, an InputSource, an InputStream, or a URI.
An example of how to parse an XML document from a File object is as follows:

Document document=documentBuilder.parse(new File("catalog.xml"));



CHAPTER 2 PARSING XML DOCUMENTS

The Document interface provides various methods to navigate the DOM structure. Table 2-6 lists
some of the Document interface methods.

Table 2-6. Document Interface Methods

Method Name

Description

getDoctype()
getDocumentElement ()
getElementById(String)
getElementsByTagName(String)

Returns the DOCTYPE in the XML document
Returns the root element
Gets an element for a specified ID

Gets a NodelList of elements

The org.w3c.dom.Element interface represents an element in the DOM structure. You can
obtain element attributes and subelements from an Element object. Table 2-7 lists some of the

methods in the Element interface.

Table 2-7. Element Interface Methods

Method Name

Description

getAttributes()
getAttribute(String)
getAttributeNode(String)
getElementsByTagName(String)
getTagName()

Returns a NamedNodeMap of attributes

Gets an attribute value by attribute name
Returns an Attr node for an attribute

Returns a NodelList of elements by element name

Gets the element tag name

The Attr interface represents an attribute node. You can obtain the attribute name and value
from the Attr node. Table 2-8 lists some of the methods in the Attr node.

Table 2-8. Attr Interface Methods

Method Name Description

getName () Returns the attribute name

getValue() Returns the attribute value

43



44

CHAPTER 2 PARSING XML DOCUMENTS

All the specialized Node interfaces, such as Document, Element and Attr, inherit methods defined
by the Node interface. Table 2-9 lists some of the methods in the Node interface.

Table 2-9. Node Interface Methods

Method Name Description

getAttributes() Returns a NamedNodeMap of attributes for an element node
getChildNodes() Returns the child nodes in a node

getLocalName() Returns the local name from an element node and an attribute node
getNodeName () Returns the node name

getNodeValue() Returns the node value

getNodeType() Returns the node type

In the example DOM application, retrieve the root element with the getDocumentElement ()
method, and obtain the root element name with the getTagName () method, as shown in Listing 2-5.

Listing 2-5. Retrieving the Root Element Name

Element rootElement = document.getDocumentElement();
String rootElementName = rootElement.getTagName();

If the root element has attributes, retrieve the attributes in the root element. The hasAttributes()
method tests whether an element has attributes, and the getAttributes() method retrieves the
attributes, as shown in Listing 2-6.

Listing 2-6. Retrieving Root Element Attributes

if (rootElement.hasAttributes()) {
NamedNodeMap attributes = rootElement.getAttributes();
}

The getAttributes() method returns a NamedNodeMap of attributes. The NamedNodeMap method
getNodeLength() returns the attribute list length, and the attributes in the attribute list are retrieved
with the item(int) method. A NamedNodeMap may be iterated over to retrieve the value of attributes,
as shown in Listing 2-7. The Attr object method getName () returns the attribute name, and the method
getValue() returns the attribute value.

Listing 2-7. Retrieving Attribute Values

for (int i = 0; 1 < attributes.getlength(); i++) {
Attr attribute = (Attr) (attributes.item(i));
System.out.println("Attribute:" + attribute.getName()+
" with value " + attribute.getValue());

If the root element has subnodes, you can retrieve the nodes with the getChildNodes () method.
The hasChildNodes () method tests whether an element has subnodes, as shown in Listing 2-8.



CHAPTER 2 PARSING XML DOCUMENTS

Listing 2-8. Retrieving Nodes in the Root Element

if (rootElement.hasChildNodes()) {
NodeList nodelist = rootElement.getChildNodes();
}

The node list includes whitespace text nodes. The NodelList method getNodeLength() returns
the node list length, and you can retrieve the nodes in the node list with the item(int) method, as
shown in Listing 2-9.

Listing 2-9. Retrieving Nodes in aNodelist

for (int i = 0; i < nodelist.getlength(); i++) {
Node node = nodelist.item(i);

}

If anode is of type Element, a Node object may be cast to Element. The node type is obtained with
the Node interface method getNodeType(). The getNodeType() method returns a short value. Table 2-10
lists the different short values and the corresponding node types.

Table 2-10. Node Types

Short Value

Node Type

ELEMENT_NODE
ATTRIBUTE_NODE
TEXT_NODE
CDATA_SECTION_NODE
ENTITY_REFERENCE_NODE
ENTITY_NODE
PROCESSING_INSTRUCTION_NODE
COMMENT _NODE
DOCUMENT_NODE
DOCUMENT_TYPE_NODE
DOCUMENT_FRAGMENT_NODE
NOTATION_NODE

Element node

Attr node

Text node
CDATASection node
EntityReference node
Entity node
ProcessingInstruction node
Comment node

Document node
DocumentType node
DocumentFragment node

Notation node

If anode is of type Element, cast the Node object to Element, as shown in Listing 2-10.

Listing 2-10. Casting Node to Element

if (node.getNodeType() == Node.ELEMENT NODE) {
Element element = (Element) (node);
}

45



46

CHAPTER 2 PARSING XML DOCUMENTS

If an element has a text node, you can obtain the text value with the getNodeValue() method, as
shown here:

String textValue=node.getNodeValue();

DOM API Example

The Java application DOMParser.java shown in Listing 2-11 parses the XML document shown in
Listing 2-2. We are assuming you have imported the XML document shown in Listing 2-2 to the
Chapter2 project, as shown in Figure 2-2.

This example demonstrates how to use a DocumentBuilder object to parse the example XML
document. Once you successfully parse the document, you get a Document object, which represents
an in-memory tree structure for the example document. You retrieve the node representing the root
element from the Document object, and you use the visitNode() method to walk down this tree and
visit each node, starting at the root element.

When you get to a node while traversing the tree, you first find its node type. If the node type is
Element, you traverse the child nodes of the Element node with the visitNode() method. The visitNode()
method also outputs the element tag name and attributes in an element. If the node type is Text and
the Text node is not an empty node, the text value of the Text node is output.

Listing 2-11. DOM Parsing Application DOMParser. java

package com.apress.dom;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.*;

import org.xml.sax.SAXException;

import java.io.*;

public class DOMParser {

public static void main(String argv[]) {
try {
// Create a DocumentBuilderFactory
DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();

File xmlFile = new File("catalog.xml");
// Create a DocumentBuilder
DocumentBuilder builder = factory.newDocumentBuilder();
// Parse an XML document
Document document = builder.parse(xmlFile);
// Retrieve root element
Element rootElement = document.getDocumentElement();
System.out.println("Root Element is: " + rootElement.getTagName());
visitNode(null, rootElement);

} catch (SAXException e) {
System.out.println(e.getMessage());



CHAPTER 2 PARSING XML DOCUMENTS

} catch (ParserConfigurationException e) {
System.out.println(e.getMessage());

} catch (IOException e) {
System.out.println(e.getMessage());
}
}

public static void visitNode(Element previousNode, Element visitNode) {
// process an Element node
if (previousNode != null) {
System.out.println("Element " + previousNode.getTagName()
+ " has element:");
}
System.out.println("Element Name: " + visitNode.getTagName());
// list attributes for an element node
if (visitNode.hasAttributes()) {
System.out.println("Element " + visitNode.getTagName()
+ " has attributes: ");
NamedNodeMap attributes = visitNode.getAttributes();

for (int j = 0; j < attributes.getlength(); j++) {
Attr attribute = (Attr) (attributes.item(j));
System.out.println("Attribute:" + attribute.getName()

+ " with value " + attribute.getValue());

}
}

// Obtain a Nodelist of nodes in an Element node

NodeList nodelist = visitNode.getChildNodes();
for (int i = 0; i < nodelist.getlength(); i++) {
Node node = nodelist.item(i);
// Retrieve Element nodes
if (node.getNodeType() == Node.ELEMENT NODE) {
Element element = (Element) node;
// Recursive call to visitNode method to process
// an Element node hierarchy
visitNode(visitNode, element);
} else if (node.getNodeType() == Node.TEXT NODE) {
String str = node.getNodeValue().trim();
if (str.length() > 0) {
System.out.println("Element Text:

+ str);

}
}

Listing 2-12 shows the output from running the DOM application in Eclipse. This output shows
the node type and node value associated with each node visited in the tree walk.

47



48

CHAPTER 2 PARSING XML DOCUMENTS

Listing 2-12. Output from the DOMParser Application

Root Element is: catalog

Element Name: catalog

Element catalog has attributes:
Attribute:publisher with value 0'Reilly
Attribute:title with value OnJava.com
Element catalog has element:

Element Name: journal

Element journal has attributes:
Attribute:date with value January 2004
Element journal has element:

Element Name: article

Element article has element:

Element Name: title

Element Text: Data Binding with XMLBeans
Element article has element:

Element Name: author

Element Text: Daniel Steinberg

Element catalog has element:

Element Name: journal

Element journal has attributes:
Attribute:date with value Sept 2005
Element journal has element:

Element Name: article

Element article has element:

Element Name: title

Element Text: What Is Hibernate
Element article has element:

Element Name: author

Element Text: James Elliott

Parsing with SAX 2.0

SAX 2.05 is an event-based API to parse an XML document. SAX 2.0 is not a W3C Recommendation.
However, it is a widely used API that has become a de facto standard. To date, SAX has two major
versions: SAX 1.0 and SAX 2.0. There are no fundamental differences between the two versions. The
most notable difference is that the SAX 1.0 Parser interface is replaced with the SAX 2.0 XMLReader
interface, which improves upon the SAX 1.0 interface by providing full support for namespaces. In
this chapter, we will focus only on the SAX 2.0 AP

SAX 2.0 is a push-model API; events are generated as an XML document is parsed. Events are
generated by the parser and delivered through the callback methods defined by the application. Key
points pertaining to the use of the SAX 2.0 API are as follows:

* Youneed to import atleast two packages: the org.xml.sax package for the SAX interfaces and
the javax.xml.parsers package for the SAXParser and SAXParserFactory classes. In addition,
youmay need to import the org.xml.sax. helpers package, which has useful helper classes for
using the SAX API.

5. You can find information about SAX at http://www.saxproject.org/.



CHAPTER 2 PARSING XML DOCUMENTS

e ContentHandler is the main interface that an application needs to implement because it
provides event notification about the parsing events. The DefaultHandler class provides a
default implementation of the ContentHandler interface. To handle SAX parser events, an
application can either define a class that implements the ContentHandler interface or define
a class that extends the DefaultHandler class.

* You use the SAXParser class to parse an XML document.

* You obtain a SAXParser object from a SAXParserFactory object. To obtain a SAX parser, you
need to first create an instance of the SAXParserFactory using the static method newInstance(),
as shown in the following example:

SAXParserFactory factory=SAXParserFactory.newInstance();

JAXP Pluggability for SAX

JAXP 1.3 provides complete pluggability for the SAXParserFactory implementation classes. This
means the SAXParserFactory implementation class is not a fixed class. Instead, the SAXParserFactory
implementation class is obtained by JAXP, using the following lookup procedure:

1. Use the javax.xml.parsers.SAXParserFactory system property to determine the factory
class to load.

2. Use the javax.xml.parsers.SAXParserFactory property specified in the 1ib/jaxp.properties
file under the JRE directory to determine the factory class to load. JAXP reads this file only
once, and the property values defined in this file are cached by JAXP.

3. Files in the META-INF/services directory within a JAR file are deemed service provider con-
figuration files. Use the Services API, and obtain the factory class name from the META-INF/
services/javax.xml.parsers.SAXParserFactory file contained in any JAR file in the runtime
classpath.

4, Use the default SAXParserFactory class, included in the J2SE platform.
If validation is desired, set the validating attribute on factory to true:
factory.setValidating(true);

If the validation attribute of the SAXParserFactory object is set to true, the parser obtained from
such a factory object, by default, validates an XML document with respect to a DTD. To validate the
document with respect to XML Schema, you need to do more, which is covered in detail in Chapter 3.

SAX Features

SAXParserFactory features are logical switches that you can turn on and off to change parser behavior.
You can set the features of a factory through the setFeature(String, boolean) method. The first argu-
ment passed to setFeature is the name of a feature, and the second argument is a true or false value.
Table 2-11 lists some of the commonly used SAXParserFactory features. Some of the SAXParserFactory
features are implementation specific, so not all features may be supported by different factory
implementations.

49



50

CHAPTER 2 PARSING XML DOCUMENTS

Table 2-11. SAXParserFactory Features

Feature

Description

http://xml.org/sax/features/namespaces
http://xml.org/sax/features/validation

http://apache.org/xml/features/
validation/schema

http://xml.org/sax/features/
external-general-entities

http://xml.org/sax/features/
external-parameter-entities

http://apache.org/xml/features/
nonvalidating/load-external-dtd

http://xml.org/sax/features/
namespace-prefixes

http://xml.org/sax/features/xml-1.1

Performs namespace processing if set to true
Validates an XML document

Performs XML Schema validation

Includes external general entities

Includes external parameter entities and the
external DTD subset

Loads the external DTD

Reports attributes and prefixes used for
namespace declarations

Supports XML 1.1

SAX Properties

SAX parser properties are name-value pairs that you can use to supply object values to a SAX parser.
These properties affect parser behavior and can be set on a parser through the setProperty(String,
Object) method. The first argument passed to setProperty is the name of a property, and the second
argument is an Object value. Table 2-12 lists some of the commonly used SAX parser properties.
Some of the properties are implementation specific, so not all properties may be supported by

different SAX parser implementations.

Table 2-12. SAX Parser Properties

Property

Description

http://apache.org/xml/properties/schema/

external-schemalocation

http://apache.org/xml/properties/schema/

external-noNamespaceSchemalocation

http://xml.org/sax/properties/declaration-handler

http://xml.org/sax/properties/lexical-handler

http://xml.org/sax/properties/dom-node

http://xml.org/sax/properties/document-xml-version

Specifies the external schemas
for validation

Specifies external no-namespace
schemas

Specifies the handler for
DTD declarations

Specifies the handler for
lexical parsing events

Specifies the DOM node being parsed
if SAX is used as a DOM iterator

Specifies the XML version of
the document




CHAPTER 2 PARSING XML DOCUMENTS

SAX Handlers

To parse a document using the SAX 2.0 API, you must define two classes:

¢ Aclass that implements the ContentHandler interface (Table 2-2)

e A class that implements the ErrorHandler interface (Table 2-3)

The SAX 2.0 API provides a DefaultHandler helper class that fully implements the ContentHandler
and ErrorHandler interfaces and provides default behavior for every parser event type along with
default error handling. Applications can extend the DefaultHandler class and override relevant base
class methods to implement their custom callback handler. CustomSAXHandler, shown in Listing 2-13,
is such a class that overrides some of the base class event notification methods, including the error-
handling methods.

Key points about CustomSAXHandler class are as follows:

¢ Inthe CustomSAXHandler class, in the startDocument () and endDocument () methods, the event
type is output.

¢ Inthe startElement() method, the event type, element qualified name, and element attributes
are output. The uri parameter of the startElement() method is the namespace uri, which
may be null, for an element. The parameter localName is the element name without the
element prefix. The parameter gName is the element name with the prefix. If an element is not
in a namespace with a prefix, localName is the same as gName.

e The parameter attributes is a list of element attributes. The startElement() method prints
the qualified element name and the element attributes. The Attributes interface method
getQName () returns the qualified name of an attribute. The attribute method getValue()
returns the attribute value.

e The characters() method, which gets invoked for a text event, such as element text, prints
the text for a node.

e The three error handler methods—fatalError, error, and warning—print the error messages
contained in the SAXParseException object passed to these methods.

Listing 2-13. CustomSAXHandler Class

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandler;

private class CustomSAXHandler extends DefaultHandler {
public CustomSAXHandler() {
}

public void startDocument() throws SAXException {
//0utput Event Type
System.out.println("Event Type: Start Document");
}

public void endDocument() throws SAXException {
//0utput Event Type
System.out.println("Event Type: End Document");
}

public void startElement(String uri, String localName, String gName,
Attributes attributes) throws SAXException {
//0utput Event Type and Element Name

51



52 CHAPTER 2 PARSING XML DOCUMENTS

System.out.println("Event Type: Start Element");
System.out.println("Element Name:" + gName);
//0utput Element Attributes
for (int i = 0; i < attributes.getlength(); i++) {
System.out.printIn("Attribute Name:" + attributes.getOName(i));
System.out.println("Attribute Value:" + attributes.getValue(i));
}

}

public void endElement(String uri, String localName, String gName)
throws SAXException {
//0utput Event Type
System.out.println("Event Type: End Element");
}

public void characters(char[] ch, int start, int length)
throws SAXException {
//0utput Event Type and Text
System.out.println("Event Type: Text");
String str = (new String(ch, start, length));
System.out.println(str);
}

//Error Handling
public void error(SAXParseException e)
throws SAXException{
System.out.println("Error: "+e.getMessage());

}

public void fatalError(SAXParseException e)
throws SAXException{
System.out.println("Fatal Error: "+e.getMessage());

}

public void warning(SAXParseException e)
throws SAXException{
System.out.println("Warning: "+e.getMessage());

}

SAX Parsing Steps

The SAX parsing steps are as follows:

1. Create a SAXParserFactory object with the static method newInstance().
2. Create a SAXParser object from the SAXParserFactory object with the newSAXParser () method.

3. Create aDefaultHandler object, and parse the example XML document with the SAXParser
method parse(File, DefaultHandler).

Listing 2-14 shows a code sequence for creating a SAX parser that uses an instance of the
CustomSAXHandler class to process SAX events.



CHAPTER 2 PARSING XML DOCUMENTS

Listing 2-14. Creating a SAX Parser

SAXParserFactory factory=SAXParserFactory.newInstance();

// create a parser
SAXParser saxParser=factory.newSAXParser();

// create and set event handler on the parser
DefaultHandler handler=new CustomSAXHandler();
saxParser.parse(new File("catalog.xml"), handler);

SAX API Example

The parsing events are notified through the DefaultHandler callback methods. The CustomSAXHandler
class extends the DefaultHandler class and overrides some of the event notification methods. The
CustomSAXHandler class also overrides the error handler methods to perform application-specific
error handling. The CustomSAXHandler class is defined as a private class within the SAX parsing appli-
cation, SAXParserApp.java, as shown in Listing 2-15.

Listing 2-15. SAXParserApp. java

package com.apress.sax;

import org.xml.sax.*;

import javax.xml.parsers.*;

import org.xml.sax.helpers.DefaultHandler;
import java.io.*;

public class SAXParserApp {
public static void main(String argv[]) {

SAXParserApp saxParserApp = new SAXParserApp();
saxParserApp.parseDocument();

}

public void parseDocument() {

try { //Create a SAXParserFactory

SAXParserFactory factory = SAXParserFactory.newInstance();
//Create a SAXParser

SAXParser saxParser = factory.newSAXParser();
//Create a DefaultHandler and parser an XML document
DefaultHandler handler = new CustomSAXHandler();
saxParser.parse(new File("catalog.xml"), handler);

} catch (SAXException e) {

} catch (ParserConfigurationException e) {

} catch (IOException e) {

}

}

53



54 CHAPTER 2 PARSING XML DOCUMENTS

//DefaultHandler class
private class CustomSAXHandler extends DefaultHandler {
public CustomSAXHandler() {

}

public void startDocument() throws SAXException {
System.out.println("Event Type: Start Document");

}

public void endDocument() throws SAXException {
System.out.println("Event Type: End Document");

}

public void startElement(String uri, String localName, String gName,

Attributes attributes) throws SAXException {

System.out.println("Event Type: Start Element");

System.out.println("Element Name:" + gName);

for (int i = 0; i < attributes.getlength(); i++) {
System.out.println("Attribute Name:" + attributes.getOName(i));
System.out.println("Attribute Value:" + attributes.getValue(i));

}

}

public void endElement(String uri, String localName, String gName)
throws SAXException {
System.out.println("Event Type: End Element");

}

public void characters(char[] ch, int start, int length)
throws SAXException {
System.out.println("Event Type: Text");
String str = (new String(ch, start, length));
System.out.println(str);
}

public void error(SAXParseException e)
throws SAXException{
System.out.println("Error "+e.getMessage());

}

public void fatalError(SAXParseException e)
throws SAXException{
System.out.println("Fatal Error "+e.getMessage());
}

public void warning(SAXParseException e)
throws SAXException{
System.out.println("Warning "+e.getMessage());
}



CHAPTER 2 PARSING XML DOCUMENTS 55

Listing 2-16 shows the output from SAXParserApp.java. Whitespace between elements is also
output as text, because unlike in the case of the DOM API example, the SAX example does not filter
out whitespace text.

Listing 2-16. Output from the SAXParserApp Application

Event Type: Start Document
Event Type: Start Element
Element Name:catalog
Attribute Name:title
Attribute Value:OnJava.com
Attribute Name:publisher
Attribute Value:0'Reilly
Event Type: Text

Event Type: Text

Event Type: Start Element
Element Name:journal
Attribute Name:date
Attribute Value:January 2004
Event Type: Text

Event Type: Start Element
Element Name:article
Event Type: Text

Event Type: Text

Event Type: Start Element
Element Name:title

Event Type: Text

Data Binding with XMLBeans
Event Type: End Element
Event Type: Text

Event Type: Start Element
Element Name:author

Event Type: Text

Daniel Steinberg

Event Type: End Element
Event Type: Text

Event Type: End Element
Event Type: Text



56 CHAPTER 2 PARSING XML DOCUMENTS

Event Type: End Element
Event Type: Text

Event Type: Start Element
Element Name:journal
Attribute Name:date
Attribute Value:Sept 2005
Event Type: Text

Event Type: Text

Event Type: Start Element
Element Name:article
Event Type: Text

Event Type: Start Element
Element Name:title

Event Type: Text

What Is Hibernate

Event Type: End Element
Event Type: Text

Event Type: Start Element
Element Name:author

Event Type: Text

James Elliott

Event Type: End Element
Event Type: Text

Event Type: End Element
Event Type: Text

Event Type: End Element
Event Type: Text

Event Type: Text

Event Type: End Element
Event Type: End Document

To demonstrate error handling in a SAX parsing application, add an error in the example XML
document, catalog.xml; remove a </journal> tag, for example. The SAX parsing application outputs
the error in the XML document, as shown in Listing 2-17.



CHAPTER 2 PARSING XML DOCUMENTS

Listing 2-17. SAX Parsing Error

Fatal Error: The element type
"journal" must be terminated by the matching end-tag "</journal>".

Parsing with StAX

StAX is a pull-model API for parsing XML. StAX has an advantage over the push-model SAX. In the
push model, the parser generates events as the XML document is parsed. With the pull parsing in
StAX, the application generates the parse events; thus, you can generate parse events as required.
The StAX API (JSR-173)6 is implemented in J2SE 6.0.

Key points about StAX API are as follows:

e The StAX API classes are in the javax.xml.stream and javax.xml.stream.events packages.

* The StAX API offers two different APIs for parsing an XML document: a cursor-based APT and
an iterator-based API.

e The XMLStreamReader interface parses an XML document using the cursor API.
* XMLEventReader parses an XML document using the iterator API.

* You can use the XMLStreamWriter interface to generate an XML document.

We will first discuss the cursor API and then the iterator API.

Cursor API

You can use the XMLStreamReader object to parse an XML document using the cursor approach. The
next () method generates the next parse event. You can obtain the event type from the getEventType()
method. You can create an XMLStreamReader object from an XMLInputFactory object, and you can
create an XMLInputFactory object using the static method newInstance(), as shown in Listing 2-18.

Listing 2-18. Creating an XMLStreamReader Object

XMLInputFactory inputFactory=XMLInputFactory.newInstance();
InputStream input=new FileInputStream(new File("catalog.xml"));
XMLStreamReader xmlStreamReader = inputFactory.createXMLStreamReader(input);

The next parsing event is generated with the next () method of an XMLStreamReader object, as
shown in Listing 2-19.

Listing 2-19. Obtaining a Parsing Event

while (xmlStreamReader.hasNext()) {
int event = xmlStreamReader.next();

}

The next () method returns an int, which corresponds to a parsing event, as specified by an
XMLStreamConstants constant. Table 2-13 lists the event types returned by the XMLStreamReader object.

For a START_DOCUMENT event type, the getEncoding() method returns the encoding in the XML
document. The getVersion() method returns the XML document version.

6. You can find this specification at http://jcp.org/aboutJava/communityprocess/final/jsr173/index.html.

57



58

CHAPTER 2

Table 2-13. XMLStreamReader Events

PARSING XML DOCUMENTS

Event Type

Description

START_DOCUMENT
START_ELEMENT
ATTRIBUTE

NAMESPACE

CHARACTERS

COMMENT

SPACE

PROCESSING INSTRUCTION
DTD

ENTITY_REFERENCE
CDATA

END_ELEMENT
END_DOCUMENT
ENTITY_DECLARATION
NOTATION DECLARATION

Start of a document

Start of an element

An element attribute

A namespace declaration
Characters may be text or whitespace
A comment

Ignorable whitespace
Processing instruction
ADTD

An entity reference

CDATA section

End element

End document

An entity declaration

A notation declaration

For a START_ELEMENT event type, the getPrefix() method returns the element prefix, and the
getNamespaceURI() method returns the namespace or the default namespace. The getLocalName()
method returns the local name of an element, as shown in Listing 2-20.

Listing 2-20. Outputting the Element Name

if (event == XMLStreamConstants.START ELEMENT) {
System.out.println("Element Local Name:"+ xmlStreamReader.getlLocalName());

}

The getAttributesCount() method returns the number of attributes in an element. The
getAttributePrefix(int) method returns the attribute prefix for a specified attribute index.
The getAttributeNamespace(int) method returns the attribute namespace for a specified attribute
index. The getAttributelLocalName(int) method returns the local name of an attribute, and the
getAttributeValue(int) method returns the attribute value. The attribute name and value are

output as shown in Listing 2-21.

Listing 2-21. Outputting the Attribute Name and Value

for (int i = 0; 1 < xmlStreamReader.getAttributeCount(); i++) {
//0Output Attribute Name
System.out.println("Attribute Local Name:"+
xmlStreamReader.getAttributeLocalName(i));
//0utput Attribute Value
System.out.println("Attribute Value:"+ xmlStreamReader.getAttributevalue(i));
}



CHAPTER 2 PARSING XML DOCUMENTS

The getText() method retrieves the text of a CHARACTERS event, as shown in Listing 2-22.

Listing 2-22. Outputting Text

if (event == XMLStreamConstants.CHARACTERS) {
System.out.println("Text:" + xmlStreamReader.getText());
}

Listing 2-23 shows the complete StAX cursor API parsing application.

Listing 2-23. StAXParser. java

package com.apress.stax;

import javax.xml.stream.*;

import javax.xml.stream.events.*;

import javax.xml.stream.XMLInputFactory;
import java.io.*;

public class StAXParser {

public void parseXMLDocument () {
try {
//Create XMLInputFactory object
XMLInputFactory inputFactory = XMLInputFactory.newInstance();
//Create XMLStreamReader

InputStream input = new FileInputStream(new File("catalog.xml"));

XMLStreamReader xmlStreamReader = inputFactory
.createXMLStreamReader (input);

//0btain StAX Parsing Events

while (xmlStreamReader.hasNext()) {

int event = xmlStreamReader.next();

if (event == XMLStreamConstants.START DOCUMENT) {
System.out.println("Event Type:START DOCUMENT");

if (event == XMLStreamConstants.START ELEMENT) {
System.out.println("Event Type: START ELEMENT");
//0utput Element Local Name
System.out.println("Element Local Name:"
+ xmlStreamReader.getlLocalName());
//0utput Element Attributes
for (int i = 0; 1 < xmlStreamReader.getAttributeCount(); i++) {

System.out.println("Attribute Local Name:"
+ xmlStreamReader.getAttributelocalName(i));
System.out.println("Attribute Value:"
+ xmlStreamReader.getAttributevalue(i));
}

59



60 CHAPTER 2 PARSING XML DOCUMENTS

if (event == XMLStreamConstants.CHARACTERS) {
System.out.println("Event Type: CHARACTERS");
System.out.println("Text:" + xmlStreamReader.getText());

if (event == XMLStreamConstants.END DOCUMENT) {
System.out.println("Event Type:END_DOCUMENT");

}

if (event == XMLStreamConstants.END ELEMENT) {
System.out.printIn("Event Type: END_ELEMENT");

}

}
} catch (FactoryConfigurationError e) {
System.out.println("FactoryConfigurationError" + e.getMessage());
} catch (XMLStreamException e) {
System.out.println("XMLStreamException” + e.getMessage());
} catch (IOException e) {
System.out.println("IOException" + e.getMessage());
}

}
public static void main(String[] argv) {

StAXParser staxParser = new StAXParser();
staxParser.parseXMLDocument();

Listing 2-24 shows the output from the StAX parsing application in Eclipse.

Listing 2-24. Output from the StAXParser Application

Event Type: START_ELEMENT
Element Local Name:catalog
Attribute Local Name:title
Attribute Value:OnJava.com
Attribute Local Name:publisher
Attribute Value:0'Reilly

Event Type: CHARACTERS

Text:

Event Type: START_ELEMENT
Element Local Name:journal
Attribute Local Name:date
Attribute Value:January 2004
Event Type: CHARACTERS

Text:

Event Type: START_ELEMENT
Element Local Name:article
Event Type: CHARACTERS
Text:



CHAPTER 2

Event Type: START_ELEMENT
Element Local Name:title

Event Type: CHARACTERS
Text:Data Binding with XMLBeans
Event Type: END_ELEMENT

Event Type: CHARACTERS

Text:

Event Type: START_ELEMENT
Element Local Name:author
Event Type: CHARACTERS
Text:Daniel Steinberg
Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: START_ELEMENT
Element Local Name:journal
Attribute Local Name:date
Attribute Value:Sept 2005
Event Type: CHARACTERS
Text:

Event Type: START ELEMENT
Element Local Name:article
Event Type: CHARACTERS
Text:

Event Type: START_ELEMENT
Element Local Name:title
Event Type: CHARACTERS
Text:What Is Hibernate
Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: START_ELEMENT
Element Local Name:author
Event Type: CHARACTERS
Text:James Elliott

Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

PARSING XML DOCUMENTS

61



62

CHAPTER 2 PARSING XML DOCUMENTS

Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: END_ELEMENT
Event Type: CHARACTERS
Text:

Event Type: END_ELEMENT
Event Type:END_DOCUMENT

Iterator API

The XMLEventReader object parses an XML document with an object event iterator and generates an
XMLEvent object for each parse event. To create an XMLEventReader object, you need to first create

an XMLInputFactory object with the static method newInstance() and then obtain an XMLEventReader
object from the XMLInputFactory object with the createXMLEventReader method, as shown in Listing 2-25.

Listing 2-25. Creating an XMLEventReader Object

XMLInputFactory inputFactory=XMLInputFactory.newInstance();
InputStream input=new FileInputStream(new File("catalog.xml"));
XMLEventReader xmlEventReader = inputFactory.createXMLEventReader(input);

An XMLEvent object represents an XML document event in StAX. You obtain the next event with
the nextEvent () method of an XMLEventReader object. The getEventType() method of an XMLEventReader
object returns the event type, as shown here:

XMLEvent event=xmlEventReader.nextEvent();
int eventType=event.getEventType();

The event types listed in Table 2-13 for an XMLStreamReader object are also the event types
generated with an XMLEventReader object. The isXXX() methods in the XMLEventReader interface
return a boolean if the event is of the type corresponding to the isXXX() method. For example, the
isStartDocument () method returns true if the event is of type START_DOCUMENT. You can use relevant
XMLStreamReader methods to process event types that are of interest to the application.

Summary

You can parse an XML document using one of three methods: DOM, push, or pull.

The DOM approach provides random access and a complete ability to manipulate document
elements and attributes; however, this approach consumes the most memory. This approach is best
for use in situations where an in-memory model of the XML structure and content is required so that
an application can easily manipulate the structure and content of an XML document. Applications
that need to visualize an XML document and manipulate the document through a user interface
may find this API extremely relevant to their application objectives. The DOM Level 3 API included
in JAXP 1.3 implements this approach.



CHAPTER 2 PARSING XML DOCUMENTS

The push approach is based on a simple event notification model where a parser synchronously
delivers parsing events so an application can handle these events by implementing a callback handler
interface. The SAX 2.0 API is best suited for situations where the core objectives are as follows: quickly
parse an XML document, make sure it is well-formed and valid, and extract content information
contained in the document as the document is being parsed. It is worth noting that a DOM API
implementation could internally use a SAX 2.0 API-based parser to parse an XML document and
build a DOM tree, but it is not required to do so. The SAX 2.0 API included in JAXP 1.3 implements
this approach.

The pull approach provides complete control to an application over how the document parse
events are processed and provides a cursor-based approach and an iterator-based approach to control
the flow of parse events. This approach is best suited for processing XML content that is being streamed
over a network connection. Also, this API is useful for marshaling and unmarshaling XML documents
from and to Java types. Major areas of applications for this API include web services-related message
processing and XML-to-Java binding. The StAX API included in J2SE 6.0 implements this approach.

63






CHAPTER 3

Introducing Schema Validation

In Chapter 2, we covered how to parse XML documents, which is the most fundamental aspect of
processing an XML document. During the discussion on parsing, we noted that one of the objectives
of parsing an XML document is to validate the structure of an XML document with respect to a
schema. The process of validating an XML document with respect to a schema is schema validation,
and that is the subject of this chapter.

If a document conforms to a schema, it is called an instance of the schema. A schema defines a
class of XML documents, where each document in the class is an instance of the schema. The relation-
ship between a schema class and an instance document is analogous to the relationship between a
Java class and an instance object. Several schema languages are available to define a schema. The
following two schema languages are part of W3C Recommendations:

e DTD is the XML 1.0 built-in schema language that uses XML markup declarations! syntax to
define a schema. Validating an XML document with respect to a DTD is an integral part of
parsing and was covered in Chapter 2.

* W3C XML Schema? is an XML-based schema language. Chapter 1 offered a primer on
XML Schema.

Validating an XML document with respect to a schema definition based on the XML Schema
language is the focus of this chapter.

Schema Validation APIs

In this chapter, we will focus on the JAXP 1.33 schema validation APIs. You can classify the APIs into
two groups:

e The first group includes the JAXP 1.3 SAX and DOM parser APIs. Both these APIs perform vali-
dation as an intrinsic part of the parsing process.

¢ The second group includes the JAXP 1.3 Validation API. The Validation API is unlike the first
two APIs in that it completely decouples validation from parsing.

1. The complete markup declaration syntax is part of XML 1.0; you can find more information at http://
www.w3.0rg/TR/REC-xml/#dt-markupdecl.

2. Seehttp://www.w3.0rg/XML/Schema.

3. Java API for XML Processing (http://java.sun.com/webservices/jaxp/) is included in J2SE 5.0.

65



66

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Clearly, if the application needs to parse an XML document and the selected parser supports
schema validation, it makes sense to combine validation with parsing. However, in other scenarios,
for a variety of reasons, the validation process needs to be decoupled from the parsing process. The
following are some of the scenarios where an application may need to decouple validation from parsing:

Prior to validating an XML document with a schema, an application may need to first validate
the schema itself. The Validation API allows an application to separately compile and validate a
schema, before it is used for validating an XML document. For example, this could be appli-
cable if the schema were available from an external source that could not automatically be
trusted to be correct.

An application may have a DOM tree representation of an XML document, and the applica-
tion may need to validate the tree with respect to a schema definition. This scenario comes
about in practice if a DOM tree for an XML document is programmatically or interactively
manipulated to create anew DOM tree and the new tree needs to be validated against a schema.

An application may need to validate an XML document with respect to a schema language
that is not supported by the available parser. This is generally true for less widely supported
schema languages and is of course true for a new custom schema language.

An application may need to use the same schema definition to validate multiple XML docu-
ments. Because the Validation API constructs an object representation of a schema, it is
efficient to use a single schema object to validate multiple documents.

An application may need to validate XML content that is known to be well-formed, so there
is no point in first parsing such content. An example scenario for this case is when an XML
document is being produced programmatically through a reliable transformation process.

We discussed guidelines for selecting the appropriate JAXP 1.3 parsing API in Chapter 2.
Table 3-1 lists criteria for selecting the appropriate JAXP 1.3 validation API.

Table 3-1. Selecting a Validation API

Validation API Suitable Application

SAX parser The document is suitable for parsing with the SAX parser and requires

validation, and the parser supports the schema language.

DOM parser The document is suitable for parsing with the DOM parser and requires

validation, and the parser supports the schema language.

Validation The application needs to decouple parsing from validation; we discussed

scenarios earlier.

Configuring JAXP Parsers for Schema Validation

To enable a JAXP parser for schema validation, you need to set the appropriate properties on the
parser. You first need to set the Validating property to true, before any of the other schema valida-
tion properties described next will take effect. Other schema validation properties are as follows:



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

¢ You specify the schema language used in the schema definition through the http://
java.sun.com/xml/jaxp/properties/schemalanguage property. The value of this property
must be the URI of the schema language specification, which for the W3C XML Schema
language is http://www.w3.0rg/2001/XMLSchema.

* You specify the location of the schema definition source through the http://java.sun.com/
xml/jaxp/properties/schemaSource property. The value of this property must be one of
the following:

* The URI of the schema document location as a string

* The schema source supplied as a java.io.InputStreamobject or an org.xml.sax.InputSource
object

* The schema source supplied as a File object
e An array of the type of objects described previously
 Itisillegal to set the schemaSource property without setting schemalanguage.

* An XML document can specify the location of a namespace-aware schema through the
xsi:schemalocation attribute in the document element, as shown in the following example:

<jsp:root xmlns:jsp="http://java.sun.com/ISP/Page"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"http://java.sun.com/JSP/Page http://www.nubean.com/schemas/jsf_1_1.xsd" >

The schemalocation attribute can have one or more value pairs. In each value pair, the first
value is a namespace URI, and the second value is the schema location URI for the associated
namespace. The XML Schema 1.0 W3C Recommendation does not mandate that this attribute
value be used to locate the schema file during the schema validation.

e An XML document can specify the location of a no-namespace schema through the
xsi:noNamespaceSchemalocation attribute in the document element, as shown in the
following example:

<root xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=
"http://www.nubean.com/schemas/jsf 1 1.xsd" >

The xsi:noNamespaceSchemalocation attribute specifies the schema location URI. The XML
Schema 1.0 W3C Recommendation does not mandate that this attribute value be used to
locate the schema file during the schema validation.

An XML document can specify a DTD and can also specify a schema location. In addition, the
validating application can specify the schemaLanguage and schemaSource properties. The permutations
on these options can quickly get confusing. To simplify things, Table 3-2 lists all the configuration
scenarios and associated semantics. For all the scenarios in Table 3-2, we are assuming the
Validating property is set to true and that whenever the schemalanguage property is specified, it is
set to the URI for the XML Schema specification.

Before we discuss each of the APIs in detail, you need to set up your Eclipse project so you can
build and execute the code examples related to each API.

67



68 CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Table 3-2. Configuration of JAXP Parsers for Validation

DOCTYPE?  schemalanguage?  schemaSource? schemalocation?  Validated Schema
Against Used
No No No No Error: Must
have DOCTYPE
if Validating
is true
No No No Yes Error: Schema
language
must be set
No No Yes No/yes Error: Schema
language
must be set
Yes/no Yes No Yes XML Schema location
Schema from the instance
document
Yes/no Yes Yes No XML Schema location
Schema from the
schemaSource
property
Yes/no Yes Yes Yes XML Schema location
Schema from the
schemaSource
property
Yes No No Yes/no DTD DTD location
from DOCTYPE

Setting Up the Eclipse Project

In this chapter, we will show how to validate an example XML document, with respect to a schema
definition, using the JAXP 1.3 DOM parser, SAX parser, and Validation APIs, included in J2SE 5.0.
Therefore, the first step you need to take is to install J2SE 5.0.

Before you can build and run the code examples included in this chapter, you need an Eclipse
project. The quickest way to create your Eclipse project is to download the Chapter3 project from the
Apress website (http://www.apress.com) and import this project into Eclipse. This will create all the Java
packages and files needed for this chapter automatically.

After the import, please verify that the Java build path for the Chapter3 project is as shown in
Figure 3-1. You may need to click the Add Library button to add the JRE 5.0 system library to your
Java build path.



CHAPTER 3

& Properties for Chapter3

I bype filker bext VI

Jawva Build Path

INTRODUCING SCHEMA VALIDATION

S=TE

G D -

% JARs and class Folders on the build path:

2 Source I = Projects B Libraries | % Order and Export I

[+, JRE System Library [JRES.0]

avadoc Location
Project References

Add JARs... |
Add External JaRs... |
Add Yariable. .. |
Add Library. .. |
Add Class Folder... |

Edit. .. |
Femayve |

Default output Folder:

Chapter3build

Browse. .. |

o1

Cancel |

Figure 3-1. Java build path

We’ll use the example document, catalog.xml, shown in Listing 3-1 as input in all the validation

examples.

Listing 3-1. catalog. xml

<?xml version="1.0" encoding="UTF-8"?>

<catalog xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalocation="catalog.xsd"

title="OnJava.com" publisher="0'Reilly">
<journal date="April 2004">

<article>

<title>Declarative Programming in Java</title>

<author>Narayanan Jayaratchagan</author>
</article>

</journal>

<journal date="January 2004">
<article>
<title>Data Binding with XMLBeans</title>
<author>Daniel Steinberg</author>
</article>

</journal>

</catalog>

69



70

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

The catalog.xml XML document is validated with respect to the catalog.xsd schema definition
shown in Listing 3-2. In catalog.xml, the attribute xsi:noNamespaceSchemalocation="catalog.xsd"
defines the location of the schema

The catalog.xml documentis an instance of the catalog.xsd schema definition. In this schema
definition, the root catalog element declaration defines the title and publisher optional attributes
and zero or more nested journal elements. Each journal element definition defines the optional
date attribute and zero or more nested article elements. Each article element definition defines
the nested title element and zero or more author elements. You should review this schema defini-
tion by applying the concepts covered in the XML Schema primer in Chapter 1.

Listing 3-2. catalog.xsd

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="catalog">
<xs:complexType>
<Xs:sequence>
<xs:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="title" type="xs:string"/>
<xs:attribute name="publisher" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="journal">
<xs:complexType>
<XSs:sequence>
<xs:element ref="article
</xs:sequence>
<xs:attribute name="date" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="article">
<xs:complexType>
<XSs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element ref="author" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="author" type="xs:string"/»>
</xs:schema>

minOccurs="0" maxOccurs="unbounded"/>

In the following sections, we’ll discuss how to validate the catalog.xml document with the
catalog.xsd schema. Before we do that, though, please verify that catalog.xml and catalog.xsd
appear in the Chapter3 project, as shown in Figure 3-2.



Hierarchy =g

3 com.apress,validation.dam
m DoOMyvalidatar java
=3 com.apress.validation.jaxpl3
. B-[F] ¥MLSchemavalidator . java
= f3 com.apress.validation.sax
H m Saxvalidator java

B4, JRE System Library [JRES.0]
- |5] catalog,xml

Figure 3-2. Chapter3 project

CHAPTER 3

INTRODUCING SCHEMA VALIDATION

As noted at the outset, we will discuss schema validation using the JAXP 1.3 DOM parser, SAX
parser, and Validation APIs. We will start with the JAXP 1.3 DOM parser API.

JAXP 1.3 DOM Parser API

We covered parsing with the JAXP 1.3 DOM parser API in Chapter 2. In this section, the focus is on
schema validation using the JAXP 1.3 DOM parser API. The basic steps for schema validation using

this API are as follows:

. Create an instance of the DOM parser factory.

. Configure the DOM parser factory instance to support schema validation.

. Configure a parser instance with an error handler so the parser can report validation errors.

1
2
3. Obtain a DOM parser from the configured DOM parser factory.
4
5

. Parse the document using the configured parser.

We will map these basic steps to specific steps using the JAXP 1.3 DOM API, which is defined in
the org.w3c.dom package. In addition, the DOM API relies on the following SAX packages: org.xml.sax
and org.xml.sax.helpers. The reliance on the SAX API within the DOM API is specified in JAXP 1.3
and is merely an effort to reuse classes, where appropriate. To begin, import the following classes:

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.helpers.DefaultHandler;

Create a DOM Parser Factory

As noted previously, the first step is to create a DOM parser factory, so you need to create a

DocumentBuilderFactory, as shown here:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance ();

4



72 CHAPTER 3 INTRODUCING SCHEMA VALIDATION

The implementation class for DocumentBuilderFactory is pluggable. The JAXP 1.3 API loads the
implementation class for DocumentBuilderFactory by applying the following rules, in order, until a
rule succeeds:

1. Use the javax.xml.parsers.DocumentBuilderFactory system property to load an implemen-
tation class.

2. Use the properties file 1ib/jaxp.properties in the JRE directory. If this file exists, parse this
file to check whether a property has the javax.xml.parsers.DocumentBuilderFactory key.
If such a property exists, use the value of this property to load an implementation class.

3. Files in the META-INF/services directory within a JAR file are deemed service provider con-
figuration files. Use the Services API, and obtain the factory class name from the META-INF/
services/javax.xml.parsers.DocumentBuilderFactory file contained in any JAR file in the
runtime classpath.

4. Use the platform default DocumentBuilderFactory instance, included in the J2SE platform
being used by the application.

Configure a Factory for Validation

Before you can use a DocumentBuilderFactory instance to create a parser for schema validation, you
need to configure the factory for schema validation. To configure a factory for validation, you may
use the following options:

¢ To parse an XML document with a namespace-aware parser, set the setNamespaceAware()
feature of the factory to true. By default, the namespace-aware feature is set to false.

¢ To make the parser a validating parser, set the setValidating() feature of the factory to true.
By default, the validation feature is set to false.

e To validate with an XML Schema language-based schema definition, set the schemalLanguage
attribute, which specifies the schema language for validation. The attribute name is http://
java.sun.com/xml/jaxp/properties/schemalanguage, and the attribute value for the W3C XML
Schema language is http://www.w3.0rg/2001/XMLSchema.

¢ The schemaSource attribute specifies the location of the schema. The attribute name is
http://java.sun.com/xml/jaxp/properties/schemaSource, and the attribute value is a URL
pointing to the schema definition source.

Listing 3-3 shows the configuration of a factory instance based on these validation options.

Listing 3-3. Setting the Validation Schema

factory.setNamespaceAware (true);

factory.setValidating (true);

factory.setAttribute (
"http://java.sun.com/xml/jaxp/properties/schemalanguage”,
"http://www.w3.0rg/2001/XMLSchema");

factory.setAttribute ("http://java.sun.com/xml/jaxp/properties/schemaSource”,
"SchemaUrl");

Create a DOM Parser
From the DocumentBuilderFactory object, create a DocumentBuilder DOM parser:

DocumentBuilder builder = factory.newDocumentBuilder();



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

This returns a new DocumentBuilder with the schema validation parameters set as configured
on the DocumentBuilderFactory object.

Configure a Parser for Validation

Toretrieve validation errors generated during parsing, you need to first define a class that implements an
ErrorHandler, and you do that by defining the Validator class, which extends the DefaultHandler
SAX helper class, as shown in Listing 3-4.

Listing 3-4. Validator Class

//ErrorHandler Class: DefaultHandler implements ErrorHandler
class Validator extends DefaultHandler {
public boolean validationError = false;
public SAXParseException saxParseException = null;

public void error(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void fatalError(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

public void warning(SAXParseException exception) throws SAXException {

}
}

AValidator instance is set as an error handler on the builder DOM parser instance, as
shown here:

Validator handler=new Validator();
builder.setErrorHandler (handler);

Validate Using the Parser

To validate an XML document with a schema definition, as part of the processing process, parse the
XML document with the DocumentBuilder parser using the parse(String uri) method, as shown
here:

builder.parse (XmlDocumentUrl)

Validator registers validation errors generated by validation.

Complete DOM API Example

The complete example program shown in Listing 3-5 validates the catalog.xml document with respect
to the catalog.xsd schema. The key method in this application is validateSchema(). In this method,
aDocumentBuilderFactory instance is created, and the schema location to validate the catalog.xml
documentis set. A DocumentBuilder DOM parser is obtained from the factory and configured with an
error handler. The private Validator class extends the DefaultHandler class and implements the
error handler. Validation takes place as part of the parsing process.

73



74

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Listing

3-5. DOMValidator. java

package com.apress.validation.dom;

import
import
import
import
import
import

public

publ
tr

}

javax.xml.parsers.DocumentBuilderFactory;
javax.xml.parsers.DocumentBuilder;
javax.xml.parsers.ParserConfigurationException;
org.xml.sax.SAXException;
org.xml.sax.SAXParseException;
org.xml.sax.helpers.DefaultHandler;

class DOMValidator {

ic void validateSchema(String SchemaUrl, String XmlDocumentUrl) {

y {
//Create DocumentBuilderFactory

DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();

//Set factory to be a validating factory.
factory.setNamespaceAware(true);
factory.setValidating(true);
//Set schema attributes
factory.setAttribute(
"http://java.sun.com/xml/jaxp/properties/schemalanguage",
"http://www.w3.0rg/2001/XMLSchema");
factory.setAttribute(
"http://java.sun.com/xml/jaxp/properties/schemaSource",
SchemaUrl);

//Create a DocumentBuilder
DocumentBuilder builder = factory.newDocumentBuilder();

//Create a ErrorHandler and set ErrorHandler
// on DocumentBuilderparser
Validator handler = new Validator();
builder.setErrorHandler (handler);

//Parse XML Document
builder.parse(XmlDocumentUrl);
//0utput Validation Errors
if (handler.validationError == true)
System.out.println("XML Document has Error:"
+ handler.validationError + " "
+ handler.saxParseException.getMessage());
else
System.out.println("XML Document is valid");
catch (java.io.IOException ioe) {
System.out.println("IOException "
catch (SAXException e) {
System.out.println("SAXException" + e.getMessage());
catch (ParserConfigurationException e) {

+ ioe.getMessage());



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

System.out
.println("ParserConfigurationException
+ e.getMessage());
}
}

//ErrorHandler Class
private class Validator extends DefaultHandler {
public boolean validationError = false;

public SAXParseException saxParseException = null;

public void error(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void fatalError(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void warning(SAXParseException exception) throws SAXException {
}
}

public static void main(String[] argv) {
String Schemalrl = "catalog.xsd";
String XmlDocumentUrl = "catalog.xml";
DOMValidator validator = new DOMValidator();
validator.validateSchema(SchemaUrl, XmlDocumentUrl);
}
}

Listing 3-6 shows the output from the DOM parser validation application.

Listing 3-6. Output from DOMValidator. java
XML Document is valid

To demonstrate validation error handling, add an element in catalog.xml that does not conform
to the schema. For example, add a nonconforming title element to the catalog element, as
shown here:

<title>Chapter 3: Schema Validation</title>
This leads to an expected validation error, as shown in Listing 3-7. Be sure to remove this error

from the document, or else the remaining examples will not work correctly.

Listing 3-7. Output with a Validation Error

XML Document has Error:true cvc-complex-type.2.4.a: Invalid content was found st
arting with element 'title'. One of '{journal}' is expected.

75



76

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

JAXP 1.3 SAX Parser API

We covered parsing with the JAXP 1.3 SAX parser API in Chapter 2. In this section, the focus is on
schema validation using the JAXP 1.3 SAX parser API. The basic steps for schema validation using
this API are conceptually similar to the DOM parser API:

. Create an instance of the SAX parser factory.

. Configure the SAX parser factory instance to support schema validation.

1

2

3. Obtain a SAX parser from the SAX parser factory.

4. Configure the SAX parser instance to specify the schema location and error handler.
5

. Parse the document using the configured SAX parser.

To use SAX parsing, you need the SAXParserFactory and SAXParser classes. We will show how to
extend the DefaultHandler class to implement a customized error handler. So, import the following
classes:

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.SAXParser;
import org.xml.sax.helpers.DefaultHandler;

Create a SAX Parser Factory

To create a SAX parser, you first need to create a SAXParserFactory object. You create a SAXParserFactory
object using the newInstance() static method, as shown here:

SAXParserFactory factory = SAXParserFactory.newInstance();

Configure the Factory for Validation

You need to set the factory to be a namespace-aware factory and a validating factory using the
setNamespaceAware() and setValidating() methods, as shown here:

factory.setNamespaceAware(true);
factory.setValidating(true);

When validating with a SAX parser, you may need to set schema validation features that are
parser specific. For example, the Xerces2-j* SAX parser, which is the default SAX parser in JAXP 1.3,
supports the following features:

e Thevalidation feature turns on validation. This is the same as invoking
setNamespaceAware(true) on the factory. In the example code, it is redundant and is purely
for demonstration purposes.

¢ Thevalidation/schema feature turns on XML Schema validation. This is also redundant for
the example code because later you'll set the schemalLanguage and schemaSource properties on
the parser.

e Thevalidation/schema-full-checking feature turns on rigorous checking on the schema
grammar. It does not affect XML document validation. Turning on this feature is both perfor-
mance and memory intensive.

4. Seehttp://xerces.apache.org/xerces2-j/.



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

For a complete list of Xerces2-j features, consult the documentation at http://xerces.apache.
org/xerces2-j/features.html. You can set the previously listed features on the SAX parser factory,
as shown in Listing 3-8.

Listing 3-8. Setting Validation Features

factory.setFeature("http://xml.org/sax/features/validation”,true);

factory.setFeature("http://apache.org/xml/features/validation/schema", true);

factory.setFeature("http://apache.org/xml/features/validation/schema-full-checking",
true);

Create a SAX Parser
To validate with a SAX parser, you need to create a SAXParser object, as shown here:

SAXParser parser = new SAXParser();

Configure the Parser

You also need to set the schemalLanguage and schemaSource properties. The schemalLanguage property
specifies the schema language for validation. The schemaSource property specifies the schema docu-
ment to be used for validation, as shown in Listing 3-9.

Listing 3-9. Setting Parser Properties

parser.setProperty("http://java.sun.com/xml/jaxp/properties/schemalLanguage",
"http://www.w3.0rg/2001/XMLSchema");

parser.setProperty("http://java.sun.com/xml/jaxp/properties/schemaSource"”,
SchemaUrl);

To create a customized ExrrorHandler class, create a class that extends the DefaultHandler class,
as shown in Listing 3-10.

Listing 3-10. DefaultHandler Class

private class Validator extends DefaultHandler {
public boolean validationError = false;
public SAXParseException saxParseException = null;

public void error(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void fatalError(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void warning(SAXParseException exception) throws SAXException {

}

}

The DefaultHandler class implements the ErrorHandler interface and specifies an ErrorHandler
for the SAX parser.

77



78

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Validate Using the Parser

You can use the overloaded parse methods in the SAXParser class for parsing and validating an XML
document. In this example, you will use the parse(File, DefaultHandler) method, as shown here:

parser.parse(xmlFile, handler);

The validation errors generated by the parser get registered with the ErrorHandler interface and
are retrieved from the ErrorHandler interface.

Complete SAX API Validator Example

Listing 3-11 lists a complete example using this API. The key method in this example is validateSchema().
In this method, a SAXParserFactory instance is created, and schema validation features are set. A
SAXParser is obtained from this factory and configured with a schema source and an error handler.
SAXValidator.java defines a private class Validator that extends the DefaultHandler class and
implements the error hander. The example document is validated as part of the parsing process.

Listing 3-11. SAXValidator. java

package com.apress.validation.sax;

import javax.xml.parsers.SAXParserFactory;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.helpers.DefaultHandler;

import java.io.File;

public class SAXValidator {

public void validateSchema(String Schemalrl, File xmlFile) {
try {
// Create SAXParserFactory
SAXParserFactory factory = SAXParserFactory.newInstance();

// Set factory to be a validating factory.
factory.setNamespaceAware(true);
factory.setValidating(true);

// Set schema validation features

factory.setFeature("http://xml.org/sax/features/validation", true);
factory.setFeature(
"http://apache.org/xml/features/validation/schema", true);

factory.setFeature(

"http://apache.org/xml/features/validation/schema-full-checking",
true);
// Create SAXParser
SAXParser parser = factory.newSAXParser();



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

// Set schema properties

parser.setProperty(
"http://java.sun.com/xml/jaxp/properties/schemalanguage"”,
"http://www.w3.0rg/2001/XMLSchema™);

parser.setProperty(
"http://java.sun.com/xml/jaxp/properties/schemaSource",
SchemaUrl);

// Create a ErrorHandler

Validator handler = new Validator();

// Parse XML Document
parser.parse(xmlFile, handler);

// Output Validation Errors
if (handler.validationError == true)
System.out.println("XML Document has Error:"
+ handler.validationError + " "
+ handler.saxParseException.getMessage());
else
System.out.println("XML Document is valid");
} catch (java.io.IOException ioe) {
System.out.println("IOException "
} catch (SAXException e) {
System.out.println("SAXException" + e.getMessage());
} catch (ParserConfigurationException e) {
System.out
.println("ParserConfigurationException
+ e.getMessage());

+ ioe.getMessage());

}
}

// ErrorHandler Class
private class Validator extends DefaultHandler {
public boolean validationError = false;

public SAXParseException saxParseException = null;

public void error(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void fatalError(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void warning(SAXParseException exception) throws SAXException {

}

79



80

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

public static void main(String[] argv) {
String Schemalrl = "catalog.xsd";
File xmlFile = new File("catalog.xml");
SAXValidator validator = new SAXValidator();
validator.validateSchema(SchemaUrl, xmlFile);

}
}

If you run the program shown in Listing 3-11, you should see the same output as in the case of
the DOM parser shown in Listing 3-6. To demonstrate validation error handling, add an element in
catalog.xml that does not conform to the schema catalog.xsd. For example, add a nonconforming
title element to the catalog element, as shown here:

<title>Chapter 3: Schema Validation</title>

Now run the SAXValidator. java application again. This time the program generates a valida-
tion error, as shown earlier in Listing 3-7.

JAXP 1.3 Validation API

In this section, we’ll discuss the JAXP 1.3 Validation API. To recap, the key point about this API is that
it completely decouples the validation process from the parsing process. The steps to use this API are
as follows:

1. Create an instance of the javax.xml.validation.Validator class.

2. Set an error handler on the Validator object.

3. Validate an XML document.

Create a Validator

To validate with the Validator class, import the javax.xml.validation package, as shown here:

import javax.xml.validation.*;

To validate with an XML Schema-based schema definition, you need a Schema object representation
of the schema definition. You create a Schema object from the SchemaFactory class. A SchemaFactory
is a schema compiler, which is obtained from the static method newInstance(), as shown here:

SchemaFactory factory=SchemaFactory.newInstance(XMLConstants.W3C XML _SCHEMA NS URI);
Schema schema=factory.newSchema(new File("catalog.xsd"));

The only argument to the newInstance() method is a schema language constant whose value is
XMLConstants.W3C_XML_SCHEMA_NS_URI, which is the same as http://www.w3.0rg/2001/XMLSchema.
The Validator class validates an XML document with respect to XML Schema, and a Validator
object is obtained from a Schema object, as shown here:

Validator validator=schema.newvalidator();



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Set an Error Handler

To report validation errors, define an ExrrorHandler class for Validator. This ExrrorHandler class
extends DefaultHandler, as shown in Listing 3-12.

Listing 3-12. ErrorHandler Class

private class ErrorHandlerImpl extends DefaultHandler

{
public boolean validationError = false;
public SAXParseException saxParseException=null;

public void error(SAXParseException exception) throws SAXException

{

validationError = true;
saxParseException=exception;

}

public void fatalError(SAXParseException exception) throws SAXException

{

validationError = true;
saxParseException=exception;

}

public void warning(SAXParseException exception) throws SAXException
{
}

}

An instance of an ErrorHandlerImpl class is set on the validator object with the setErrorHandler()
method, as shown here:

ErrorHandlerImpl errorHandler=new ErrorHandlerImpl();
validator.setErrorHandler(errorHandler);

If a validation error is generated, the validation error gets registered with errorHandler.

Validate the XML Document

To validate an XML document, you do not need to parse the document. Instead, you create a
StreamSource from the XML document and invoke the validate() method on the validator, passing
it the stream source for the document, as shown here:

StreamSource streamSource=new StreamSource(xmlDocument);
validator.validate(streamSource);

Complete JAXP 1.3 Validator Example

Listing 3-13 shows a complete example using this API. The key method in this application is
validateXMLDocument (). In this method, SchemaFactory creates a Schema object, which creates a
Validator object. The private class ExrrorHandlerImpl extends DefaultHandler, and an instance of
this class is set as an error handler on the Validator instance. The example XML document is validated
using one of the overloaded validate() methods defined in the Validator class.

81



82

CHAPTER 3 INTRODUCING SCHEMA VALIDATION

Listing 3-13. XMLSchemaValidator. java

package com.apress.validation.jdké;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import org.xml.sax.helpers.DefaultHandler;
import java.io.*;

import javax.xml.XMLConstants;

import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.*;

public class XMLSchemaValidator {
public void validateXMLDocument(File schemaDocument, File xmlDocument) {
try {
//Create SchemaFactory
SchemaFactory factory = SchemaFactory
.newInstance("http://www.w3.0rg/2001/XMLSchema");
//Create Schema object
Schema schema = factory.newSchema(schemaDocument);
// Create Validator and set ErrorHandler on Validator.
Validator validator = schema.newValidator();
ErrorHandlerImpl errorHandler = new ErrorHandlerImpl();
validator.setErrorHandler(errorHandler);
//Validate XML Document
StreamSource streamSource = new StreamSource(xmlDocument);
validator.validate(streamSource);
//0utput Validation Errors
if (errorHandler.validationError == true) {
System.out.println("XML Document has Error:"
+ errorHandler.validationError + " "
+ errorHandler.saxParseException.getMessage());
} else {
System.out.println("XML Document is valid");
}
} catch (SAXException e) {
} catch (IOException e) {
}
}

public static void main(String[] argv) {
File schema = new File("catalog.xsd");
File xmlDocument = new File("catalog.xml");
XMLSchemaValidator validator = new XMLSchemaValidator();
validator.validateXMLDocument(schema, xmlDocument);

}

//ErrorHandler class

private class ErrorHandlerImpl extends DefaultHandler {
public boolean validationError = false;

public SAXParseException saxParseException = null;



CHAPTER 3 INTRODUCING SCHEMA VALIDATION

public void error(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void fatalError(SAXParseException exception) throws SAXException {
validationError = true;
saxParseException = exception;

}

public void warning(SAXParseException exception) throws SAXException {

}
}
}

Run this validation application in Eclipse to produce the output previously shown in Listing 3-6.

Summary

In this chapter, we discussed three JAXP 1.3 schema validation APIs that can be classified into
two groups:

* The first group consists of the JAXP parser APIs, and these APIs perform validation as an
intrinsic part of the parsing process, if the parser is configured for schema validation.

¢ The second group consists of the JAXP Validation API, which decouples validation from parsing.
This API instantiates an object representation of a schema and uses it to validate one or more
XML documents.

When the application intent is to make sure a document being parsed is not only well-formed
but also valid, then using the first group of APIs makes perfect sense. When the intent is to validate a

document outside the context of parsing a document, clearly the JAXP Validation API is the way to go.

83






CHAPTER 4

Addressing with XPath

In Chapter 2, we discussed three approaches to parsing an XML document: the document object
approach, the push approach, and the pull approach. These approaches are embodied in three APIs—
DOM, SAX and StAX, respectively. To recap, you can use all three APIs to check that a document is
well-formed and valid, but each provides different mechanisms for accessing document nodes. The
SAX and StAX APIs allow access to document nodes only in document order! but offer the advantage
of efficient memory use. The DOM API provides random access to document nodes but at the expense
of higher processing overhead in terms of memory use.

The DOM approach creates a tree representation of an XML document that is ideally suited for
use cases that require programmatic access and manipulation of document nodes. A classic example
of a use case requiring programmatic access is an XML editor? that provides a source view and an
outline view for an XML document.

Other use cases, such as the XSLT? template language, require imperative access instead of
programmatic access to document nodes. Imperative access implies the existence of an expressive
language that allows you to address the location of any document node set; XPath* is precisely such
alanguage. In this chapter, we will discuss the various Java APIs that implement the XPath specifica-
tion, in particular the XPath API in JAXP 1.3, which is included in J2SE 5.0,% and JDOM.®

Understanding XPath Expressions

XPath is a language for addressing node sets within an XML document. It is based on an abstract
data model exclusively focused on the core information content in an XML document and ignores
allinformation related to syntax markup. The XPath data model treats an XML document as a tree of
various node types, such as an element node, an attribute node, and a text node. The XPath language
provides an XPath expression as the main syntactic construct for addressing a node set within an
XML document.

Simple Example

Since XPath expressions address a document node set, before you can proceed, you need an XML
document to reference while we discuss XPath expressions. So, consider the following simple
XML document:

Document order is the same as the depth-first order of the parse tree.

An example of such an editor is XMLEspresso; you can find it at http: //www.nubean. com.
Chapter 5 covers XSLT.

You can find the XPath specification at http://www.w3.0rg/TR/xpath.

For more information about JDK 5.0, see http://java.sun.com/j2se/1.5.0/download. jsp.
For more information about JDOM, see. http://www.jdom.oxrg/.

S



86

CHAPTER 4 ADDRESSING WITH XPATH

<catalog >

<journal title="XML" />

<journal title="Java Technology" />
</catalog>

Now, consider a simple XPath expression, /catalog/journal, that is based on this reference
XML document. When you look at this XPath expression, you may be tempted to draw an analogy
between an XPath expression and a file system path, and based on that analogy, you may intuitively
interpret the expression /catalog/journal to refer to the first journal element within the document.
In fact, this intuitive interpretation and the underlying analogy would both be wrong because this
expression selects a node set containing both journal elements.

The reason the file system analogy does not work is simple: if /catalog/journal were a file
system path, you could be assured that there would be only one journal folder under a catalog
folder, but that clearly does not hold for XML document nodes. So, here is a more appropriate
analogy for understanding XPath expressions: each component in an XPath expression is like a
pattern that must be matched to locate the node set addressed by an XPath expression. With this
basic insight in place, let’s develop your intuition further by examining more XPath examples.

XPath Expression Examples

XPath expression syntax can be fairly complex, so the best way to begin understanding XPath
expressions is to quickly walk through some examples. We will base these XPath examples on a
slightly more complex XML document, shown in Listing 4-1, than the introductory document.

Listing 4-1. Example XML Document: catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns:journal="http://www.apress.com/catalog/journal” >
<journal:journal title="XML" publisher="IBM developerWorks">
<article journal:level="Intermediate"
date="February-2003">
<title>Design XML Schemas Using UML</title>
<author>Ayesha Malik</author>
</article>
</journal:journal>
<journal title="Java Technology" publisher="IBM developerWorks">
<article level="Advanced" date="January-2004">
<title>Design service-oriented architecture
frameworks with J2EE technology</title>
<author>Naveen Balani</author>
</article>
<article level="Advanced" date="October-2003">
<title>Advance DAO Programming</title>
<author>Sean Sullivan </author>
</article>
</journal>
</catalog>

Aswe noted earlier, the XPath data model treats an XML document as a tree of nodes. Figure 4-17
shows the XPath data model for the example document. To fit the image within a page, not all article
nodes in Figure 4-1 appear in expanded form. In Figure 4-1, the document element is designated as

7. This data model visualization is based on an Eclipse plug-in, available at http://www.nubean.com.



CHAPTER 4 ADDRESSING WITH XPATH 87

#document, element nodes are designated with their name with an “e” icon, attribute nodes are
designated with their name-value pair and an “a” icon, and text nodes are designated as #text.
The #text nodes in the data model correspond to the text content in element nodes, including
whitespace text.

s
[ D] #document
=[] catalog
E smlns:journal=http:f fesa w3, orgf2001 fXMLSchema-Instance
B #text
=[] journal:journal
E publisher=IBM developerwaorks
[3] title="ML
21 #text
[ [&] article
B #text
B #text
= [&] journal
E publisher=IBM developerworks
[&] title=1ava Technology
21 #text
= [&] article
[@] date=January-2004
[@] level=Advanced
B #text
= [e]title
B #text
B #text
= [&] author
B #text
B #text
B #text
[ [&] article
2 #text
B #text

Figure 4-1. XPath data model for catalog. xml

Since we have not yet discussed XPath expression syntax, we will cover the following examples
from an intuitive standpoint, referring to the data model shown in Figure 4-1. Later in the “Location
Path” section, we will discuss XPath expression syntax in more detail.

Take a quick look at the following XPath expressions that address node sets within catalog.xml:

* /catalog/journal/article[@level="Advanced']/title is an XPath expression that evaluates
to a node set containing elements named title, nested within elements named article,
nested within an element named journal, nested within an element named catalog, whereby
the element named article has an attribute named level (attributes are identified with the @
prefix) with a value equal to Advanced. Evaluating this expression selects the second title
element, in document order.

» /catalog/journal[@title="Java Technology']/article[2] is an XPath expression that evaluates
to anode set containing elements named article, nested within an element named journal,
nested within an element named catalog, whereby the element named journal has an attribute
named title with a value equal to Java Technology and an element named article in the
second context position, in document order. The second context position of the article
element is specified through the [2] suffix. Evaluating this expression selects the second
article element in document order, in the journal titled Java Technology.



88

CHAPTER 4 ADDRESSING WITH XPATH

e /child::catalog/child::journal/child::article[attribute::date="January-2004"]/
attribute::level is an XPath expression that evaluates to a node set containing attributes
named level that are attached to the element named article, nested within an element
named journal, nested within an element named catalog, whereby the element named
article has an attribute named date with a value equal to January-2004. The syntax construct
:: in an XPath expression defines a selection axis, with the name of the axis preceding this
construct. So, for example, child: : defines the child axis, and attribute:: defines the attribute
axis. If you specify no selection axis, child: : is the implicit selection axis. So, / and /child: :
are equivalent constructs. Also, the @ syntax is shorthand for the attribute: : syntax. Evaluating
this expression selects the level attribute of the second article element, in document order.

e //article[ancestor::journal[@title="Java Technology']] is an XPath expression that
evaluates to a node set containing elements named article, with an ancestor element
named journal, whereby the element named journal has an attribute named title with a
value equal to Java Technology. The syntax construct // is shorthand for all descendant nodes;
since it is at the beginning of the expression, it implies all the descendants of the root node.
Evaluating this expression selects the second and third article elements, in document order.

Now that you have looked at some examples from an intuitive standpoint, we’ll try to broaden
your understanding of XPath syntax. Like expressions in most languages, you can compose complex
XPath expressions by additively or multiplicatively combining basic expressions. Therefore, the key
to understanding XPath expressions is to master the basic expressions and various datatypes that
may result from evaluating an XPath expression. With that as your immediate goal, you will focus on
two topics:

¢ XPath expression evaluation datatypes

* A basic expression construct called the location path

Datatypes

An XPath expression evaluation results in one of the following datatypes:

e Aboolean value of true or false

¢ A number value (a floating-point number, as defined by the Institute of Electrical and Electronics
Engineers® [IEEE])

e Astringvalue

¢ Anode-set (a set of document nodes of any type)

Location Path

Now we’ll cover the syntax associated with the location path construct. A location path can be absolute,
in which case it begins with a slash (/), or it can be relative, in which case it does not begin with a
slash. A location path can consist of zero or more location path steps, with a slash separating adja-
cent steps.

Each location path step starts with an axis specifier, followed by a node test, and optionally
followed by zero or more predicates:

Step ::= AxisSpecifier NodeTest Predicate*

The location path step components are as follows:

8. Seehttp://www.ieee.org/portal/site.



CHAPTER 4 ADDRESSING WITH XPATH

* An axis specifier is basically a logical route (axis) along which you can move from the context
node to find the next node set (the context node is the node where you start from).

e A node testis a filter that constrains the selected node set based on either a node type or a
node name.

e A predicateis a filter that constrains the selected node set based on an XPath expression.

We will cover each of these components in more detail in the following sections. For example,
the location path /child: :catalog/child::journal/child: :article[attribute::date=
'January-2004']/attribute: :level has four steps. The first step is child: : catalog, the second step
is child: :journal, the third step is child: :article[attribute: :date="January-2004"], and the
fourth step is attribute: :1evel. In the first two steps, child: : is the axis specifier, and catalog and
journal are node tests. In the third step, child: : is the axis specifier, article is a node test, and
[attribute::date="January-2004"] is a predicate. In the fourth step, attribute: : is the axis specifier,
and level is a node test. The first, second, and fourth steps don’t have any predicates.

Axis Specifier

As noted, the axis specifier specifies a logical axis along which you must move from the context node
to find the next node set specified by a location path expression. An axis specifier axis is classified as
a forward axis if by moving along it you encounter nodes that occur at or later than the context node,
in document order; otherwise, an axis is classified as a reverse axis. In Figure 4-2, we have taken the
basic XPath data model shown in Figure 4-1 and annotated it with a context node, axis labels, and
associated node sets. For example, the parent: : axis label in Figure 4-2 points to its associated node
set of the parent journal element. Of course, you always need to keep in mind the context node,
whenever you interpret the node set for any axis value.

[ D] #document
ancestor: : —m-[&] catalog
E smlns:journal=http:f fesa w3, orgf2001 fXMLSchema-Instance
B #text <
=[] journal:journal
E publisher=IBM developerwaorks .
[3] tiHle=sML preceding::
B #text
[ [&] article
B #text -
[=] #text
| &] journal
E publisher=IBM developerworks
[@] title=1ava Technology
preceding-sibling:: [ #text &
self:: ——» = [¢]artile <«——— Context Node
[@] date=January-2004 .
[@] level=Advanced ::l attribute::
P[] #text —
= [2]title
descendant: : B #test child::
B #text

= [&] author
B #text <€—

- [F] #ext

following-sibling:: I:—> B #text €———

parent::—

[ [&] article
Ly [ #text
B #text €———

following::

Figure 4-2. Axis specifier annotations on the data model

89



90 CHAPTER 4 ADDRESSING WITH XPATH

The following are possible axis specification values with examples based on the annotated data
model shown in Figure 4-2:

e self:: refers to the context node. For example, in Figure 4-2, self:: refers to the article
context node.

e child:: refers to child nodes in document order. This axis applies only to element nodes. This
axis is empty if the context node is an attribute, text, or namespace node. An element’s attribute
node is not a child node. This axis does not contain any attribute or namespace nodes. Figure 4-2
shows an example of the child: : axis. If an axis specifier is omitted, this is the default value.
This is a forward axis.

e parent:: refers to the parent node when the context node is an element node or a text node,
but it refers to the attaching element node when the context node is an attribute node. Figure 4-2
shows an example of the parent:: axis, where the context node is an element node. If the
context node were the date attribute of the current article context node, then the parent::
axis would include only the current article context node. This is a reverse axis.

e attribute:: refers to the attached attribute nodes. Figure 4-2 shows an example of
the attribute:: axis. This axis may be abbreviated with the @ character. In other words,
attribute::level and @level are equivalent. This axis is empty if the context node is not
an element node. This is a forward axis.

* ancestor:: refers to all the nodes starting with the parent and continuing with the parent’s
parent, and so on, until it reaches the root node. If you follow this axis, you will not come
across any parent siblings, attribute, or namespace nodes. Figure 4-2 shows an example of the
ancestor: : axis. This is a reverse axis.

e descendant:: refers to all the nodes starting with all element child nodes and continuing with
their descendants, in document order. This axis does not contain any attribute nodes or
namespace nodes. This axis is empty if the context node is an attribute or namespace node.
Figure 4-2 shows an example of the descendant: : axis. This is a forward axis.

e following:: refers to all the nodes that are after the context node, in document order, with
the exception of those that occur along the descendant : : axis. This axis does not contain any
attribute or namespace nodes. Figure 4-2 shows an example of the following: : axis. This is a
forward axis.

e preceding:: refers to all the nodes that are before the context node, in document order, with
the exception of those that occur along the ancestor: : axis. This axis does not contain any
attribute or namespace nodes. Figure 4-2 shows an example of the preceding: : axis. Thisis a
reverse axis.

e following-sibling:: refers to all the following: : nodes that are siblings of the context node,
in document order. This axis does not contain any attribute or namespace nodes. This axis is
empty if the context node is an attribute or namespace node. Figure 4-2 shows an example of
the following-sibling:: axis. This is a forward axis.

e preceding-sibling:: refers to all the preceding: : nodes that are siblings of the context node,
inreverse document order. This axis does not contain any attribute or namespace nodes. This
axis is empty if the context node is an attribute or namespace node. Figure 4-2 shows an
example of the preceding-sibling: : axis. This is a reverse axis.

e ancestor-or-self:: refersto all the nodes, including the current node and continuing with its
ancestors, in reverse document order. Figure 4-2 shows an example of the ancestor:: and
self:: nodes, and together they form the ancestor-or-self:: axis. This is a reverse axis.



CHAPTER 4 ADDRESSING WITH XPATH

descendant-or-self:: refers to all the nodes, including the current node and continuing with
its descendants, in document order. Figure 4-2 shows an example of the descendant: : and
self:: nodes, and together they form the descendant-or-self:: axis. This is a forward axis.

namespace: : refers to all the attached namespace nodes. This axis is empty if the context node
is not an element node. For example, in Figure 4-2, if you assume that the context node is the
root catalog element, then its xmlns : journal namespace attribute is along the namespace: : axis.
This is a forward axis.

Node Test

In a location path step, as you move along a specified axis, you will encounter nodes of different
types with varying names. These nodes comprise a node set. To this base node set, you can apply a
node test filter that can filter nodes based on node type or node name.

Node Type Tests

Node tests based on the node type are as follows:

node() is a node test that refers to a node of any type. For example, the expression
child: :node() selects all the child nodes of the context node. As noted earlier, the
attributes of an element node are not part of its child nodes.

« »

The axis and node test combination self: :node() may be abbreviated with the “.” character.
For example, the expression ./child: :node() selects all the child nodes of the context node.

The axis and node test combination of parent: :node() maybe abbreviated as the . . character
sequence. For example, the expression . ./child: :node() selects all child nodes of the parent
of the context node, which may or may not include the context node. (Can you see why?
Hint: The context node may be an attribute node.)

The axis and node test combination of /descendant-or-self: :node()/ may be abbreviated as
the // character sequence. For example, the expression // at the start of an XPath expression
selects all the nonattribute and non-namespace nodes within a document.

text() is a node test that refers to a node of type Text. For example, descendant : : text() will
evaluate to all descendant nodes of the context node that are of type Text.

comment () is a node test that refers to a node of type Comment. For example,
preceding: :comment () will evaluate to all preceding nodes of the context node that are of type
Comment.

processing-instruction() is a node test that refers to the node of type
ProcessingInstruction. For example, following: :processing-instruction() will evaluate to
all the following nodes of the context node that are of type processing-instruction.

Node Name Tests

A name-based node test with no namespace prefix refers to the following:

A namespace node, if the specified axis is a namespace axis. For example, in Figure 4-2, if
you assume the context node is the catalog element, then namespace: : journal selects the
xmlns:journal namespace node in the catalog root element.

It refers to an attribute node that is not in any namespace (including not in the default
namespace) if the specified axis is an attribute axis. For example, in Figure 4-2,
attribute::date selects the date attribute of the article context node.

91



92

CHAPTER 4 ADDRESSING WITH XPATH

¢ For all other specified axes, it refers to an element node that is not in any namespace (including

not in the default namespace). For example, in Figure 4-2, following-sibling: :article selects
the third article node, in document order.

A name-based node with a namespace prefix refers to the following:

* Anempty set, if the specified axis is a namespace axis. For example, in Figure 4-2, if you assume

the context node is the catalog element, then namespace: :xmlns:journal is an empty set.

It refers to an attribute node in the associated namespace, if the specified axis is an attribute
axis. For example, in Listing 4-1, //attribute:: journal:level selects the level attribute of
the first article node, in document order.

For all other specified axes, it refers to an element node in the associated namespace. For
example, in Figure 4-2, the preceding: :journal: journal element selects the first journal
element, in document order.

A node name test with * refers to an unrestricted wildcard for element nodes. For example, in
Figure 4-2, child: : * selects a node set containing all child: : axis elements. This implies that
child::*and child: :node() do not have the same semantics, because the former is restricted
to the child: : axis element nodes and the later selects the child: : axis nodes of any node type.

A node test with the prefix:* name refers to a namespace-restricted wildcard for element
nodes. For example, /catalog/child: :journal:* evaluates to a node set containing all
elements that are children of the catalog element and that belong to the journal: namespace,
which is just the first journal element within the document, in document order.

Predicates

The last piece in a location path step is zero or more optional predicates. The following are the two
keys to understanding predicates:

Predicates are filters on a node set.

* Predicates are XPath expressions that are evaluated and mapped to a Boolean value through

the use of a core XPath boolean() function, as described here:

¢ A number value is mapped to true if and only if it is a nonzero number. For example, in
Figure 4-2, the expression //title[position()] uses the built-in XPath position() function
that returns the child position of the selected title node as a number. Since the child posi-
tion of a node is always 1 or greater, this expression will select all the title nodes. However,
the expression //title[position() - 1] will select only those title nodes that occur at a
child position greater than 1. In the example, the second expression will not select any
nodes since all the title nodes are at child position 1.

¢ A string value is mapped to true if and only if it is a nonzero length string. For example, in
Figure 4-2, the expression //title[string()] uses the built-in XPath string() function to
implicitly convert the first node in a node set to its string node value. This expression will
select only those title nodes that have nonzero-length text content, which for the example
document means all the title nodes.

* Anode set is mapped to true ifand only if it is nonempty. For example, in Figure 4-2, in the
expression //article[child::title], the [child::title] predicate evaluates to true only
when the child: :title node set is nonempty, so the expression selects all the article
elements that have title child elements.

The output node set of a component to the left of a predicate is its input node set, and evaluating
a predicate involves iterating over this input node set. As the evaluation proceeds, the current node



CHAPTER 4 ADDRESSING WITH XPATH

in the iteration becomes the context node, and a predicate is evaluated with respect to this context
node. If a predicate evaluates to true, this context node is added to a predicate’s output node set;
otherwise, it is ignored. The output node set from a predicate becomes the input node set for subse-
quent predicates. Multiple predicates within a location path step are evaluated from left to right.

Predicates within a location path step are evaluated with respect to the axis associated with the
current step. The proximity position of a context node is defined as its position along the step axis,
in document order if it is a forward axis or in reverse document order if it is a reverse axis. The prox-
imity position of a node is defined as its context position. The size of an input node set is defined as
the context size. Context node, context position, and context size comprise the total XPath context,
relative to which all predicates are evaluated.

You can apply some of the concepts associated with predicates when looking at the following
examples, which are based on the data model in Figure 4-2:

* /catalog/child::journal[attribute::title="Java Technology'] is an XPath expression in
which the second step contains the predicate [attribute::title="Java Technology']. The
input node set for this predicate consists of all non-namespace journal elements that are
children of the catalog element. The input node set consists of only the second journal element,
in document order, because the first journal element is part of the journal namespace. So, at
the start of first iteration, the context size is 1, and the context position is also 1. As you iterate
over the input node set, you make the current node, which is the journal node, the context
node and then test the predicate. The predicate checks to see whether the context node has
an attribute named title with a value equal to Java Technology. If the predicate test succeeds,
which it should, you include this journal context node in the output set. After you iterate over
all the nodes in the input set, the output node set will consist of all the journal elements that
satisfy the predicate. The result of this expression will be just the second journal node in the
document, in document order.

e /catalog/descendant::article[position() = 2] isan XPath expression in which the second
step contains a predicate [position() = 2]. The input node set for this predicate consists of
all the article elements that are descendants of the catalog element. This input node set will
consist of all three article nodes in the document. So, at the start of first iteration, the context
size is 3, and the context position is 1. This predicate example applies the concept of context
position. As you iterate over the input node set, you make the current article element the
context node and then test the predicate. The predicate checks to see whether the context
position of the article element, as tested through the XPath core function position(), is
equal to 2. When you apply this predicate to the data model in Figure 4-2, only the second
article node that appears in expanded form will test as true. Note, the [position() = 2] pred-
icate is equivalent to the abbreviated predicate [2].The result of this expression will be the
second article node, in document order.

Having looked at XPath expressions in detail, you can now turn your attention to applying
XPath expressions using the Java-based XPath APIs.

Applying XPath Expressions

Imagine a website that provides a service related to information about journal articles. Further
imagine that this website receives journal content information from various publishers through
some web service-based messages and that the content of these messages is an XML document that
looks like the document shown earlier in Listing 4-1.

Once the web service receives this document, it needs to extract content information from this
XML document, based on some criteria. Assume that you have been asked to build an application
that extracts content information from this document based on some specific criteria. How would
you go about it?

93



94

CHAPTER 4 ADDRESSING WITH XPATH

Your first step is to ensure the received document has a valid structure or, in other words,
conforms to its schema definition. To ensure that, you will first validate the document with respect
to its schema, as explained in Chapter 3.

Your next task is to devise a way for extracting relevant content information. Here, you have at
two choices:

* You can retrieve document nodes using the DOM API

* You can retrieve document nodes using the XPath API.

So, this begs the obvious question, which is the better option?

Comparing the XPath API to the DOM API

Accessing element and attribute values in an XML document with an XPath expression is more efficient
than using getter methods in the DOM API, because, with XPath expressions, you can select an
Element node without programmatically iterating over a node list. To use the DOM API, you must
first retrieve a node list with the DOM API getter method and then iterate over this node list to
retrieve relevant element nodes.

These are the two major advantages of using the XPath API over the DOM API:

* You can select element nodes though an imperative XPath expression, and you do not need
to iterate over a node list to select the relevant element node.

* With an XPath expression, you can select an Attr node directly, in contrast to DOM API getter
methods, where an Element node needs to be accessed before an Attr node can be accessed.

As an illustration of the first advantage, you can retrieve the title element within the article
context node in the example data model shown in Figure 4-2 with the XPath expression /catalog/
journal/article[2]/title, and you can evaluate this XPath expression using the code shown in
Listing 4-2, which results in retrieving the relevant title element. At this point, we don’t expect you
to understand the code in Listing 4-2. The sole purpose of showing this code now is to illustrate the
comparative brevity of XPath API code, as compared to DOM API code.

Listing 4-2. Addressing a Node with XPath

Element article=(Element)(xPath.evaluate("/catalog/journal/article[2]/title",
inputSource,XPathConstants.NODE));

By way of contrast, if you need to retrieve the same title element with DOM API getter methods,
you need to iterate over a node list, as shown in Listing 4-3.

Listing 4-3. Retrieving a Node with the DOM

NodelList nodelist=document.getElementsByTagName("journal");
Element journal=(Element)(nodelList.item(0));
NodelList nodelList2=journal.getElementsByTagName("article");
Element article=(Element)nodelist2.item(1);

As an illustration of the second advantage, you can retrieve the value of the level attribute for
the article node with the date January-2004 directly with the XPath expression /catalog/journal/
article[@date="January-2004"]/@level, as shown in Listing 4-4.

Listing 4-4. Retrieving an Attribute Node with XPath

String level =
xPath.evaluate("/catalog/journal/article[@date="January-2004"]/@level”,
inputSource);



CHAPTER 4 ADDRESSING WITH XPATH

Suffice it to say that to achieve the same result with the DOM API, you would need to write code
that is far more tedious than that shown in Listing 4-4. It would involve finding all the journal
elements, finding all the article elements for each journal element, iterating over those article
elements, and, retrieving the date attribute for each article element, checking to see whether the
date attribute’s value is January-2004, and if so, retrieving article element’s level attribute.

The preceding discussion should not suggest that the DOM API is never useful for accessing
content information. In fact, sometimes you will be interested in accessing all the nodes in a given
element subtree. In such a situation, it makes perfect sense to access the relevant node through an
XPath API and then access its node subtree using the DOM API.

Let’s proceed with creating the XPath API-based application. To that end, you will need to first
create and configure an Eclipse project.

Setting Up the Eclipse Project

Before you can build and run the code examples included in this chapter, you need an Eclipse project.
The quickest way to create the Eclipse project is to download the Chapter4 project from Apress
(http://www.apress.com) and import this project into Eclipse. This will create all the Java packages
and files needed for this chapter automatically.

In this chapter, you will use two XPath APIs: the JAXP 1.3 XPath APIincluded in J2SE 5.0 and the
JDOM XPath API. To use J2SE 5.0’s XPath AP, install the J2SE 5.09 SDK, set its JRE system library as
the JRE system library in your Eclipse project Java build path, and set the Java compiler to the J2SE 5.0
compiler under the Eclipse project’s Java compiler. The Java build path in your Eclipse project should
look like Figure 4-3.

& Properties for Chapter4

type filter text - Java Build Path

Info
Builders 2 Source ] 1= Projects B8 Libraries | %% Order and Export ]
JARs and dlass folders on the build path:

+- Java Code Style

+- Java Compiler + Eu jaxen-core.jar - Chapter4/ib Add JARs...
= - . )

Javadoc Location +- ) jaxen-jdom.jar - Chapter4/iib

Project References + Eu jdom.jar - Chapter4/lib Add External JARs. ..
+- () saxpath.jar - Chapter4/lib ey
+- () werces.jar - Chapter4/ib bl
+-E), JRE System Library [JRE 5.0] adle

Add Class Folder...

I
[ s

Default output folder:

| Chapter4/build Browse. ..
oK | Cancel |

Figure 4-3. XPath project Java build path in Eclipse IDE

9. For more information about J2SE 5.0, see http://java.sun.com/j2se/1.5.0/.



96

CHAPTER 4 ADDRESSING WITH XPATH

The complete Eclipse project package structure should look like Figure 4-4.

% Package Explorer X

= 'bd Chapter4
= src

-1-H3 com.apress.jdkSxpath
+- [J] ¥PathEvaluator java

-1-H} com.apress.jdomxpath
+- [J] JDom¥Path.java

=i, JRE System Library [JRE 5.0]

[ jaxen-core.jar

() jaxen-jdom.jar

() jdom.jar

() saxpath.jar

(] xerces.jar

= lib

catalog. xml

4
4
4
4
4
4

Figure 4-4. Eclipse project package structure

Now, you are ready to proceed with the application. Since the example’s goal is to impart
comprehensive information about how to use the XPath APIs, we will use different XPath expressions
in the sample application to illustrate various aspects of the XPath API. Overall, you will examine two
specific XPath APIs:

¢ The first API is specified in JAXP 1.3 and is included in J2SE 5.0. It is the recommended API
if you decide to base your application on the Java 5 platform. An obvious advantage of this
approach is that it is completely standards based, and in our opinion, this should be the
preferred approach.

e The second API is based on JDOM, and it is recommended for use if you are not yet ready to
move to the J2SE 5.0 API or if you find certain aspects of this API simpler to use, compared to
the J2SE 5.0 API. In our opinion, this API is simple to use and easy to understand. However,
since it is currently not a standard, it may continue to change, which may affect the stability
of your application.

JAXP 1.3 XPath API

The JAXP 1.3 XPath APl is defined in the javax.xml.xpath package in J2SE 5.0. This package defines
various interfaces to evaluate XPath expressions. Table 4-1 lists some of the relevant classes and
interfaces in J2SE 5.0.

Table 4-1. J2SE 5.0 XPath

Class or Interface Description

XPath (interface) Provides access to the XPath evaluation environment and provides
evaluate() methods to evaluate XPath expressions in an XML document

XPathExpression Provides evaluate() methods to evaluate compiled XPath expressions

(interface) in an XML document

XPathFactory (class) Creates an XPath object




CHAPTER 4 ADDRESSING WITH XPATH

For this example, the example XML document shown in Listing 4-1 is evaluated with the
javax.xml.xpath.XPath class, and relevant node sets are extracted with the XPath API. The
evaluate() methods in XPath and the XPathExpression interfaces are used to access various
document node sets, based on the relevant XPath expressions.

XPath expressions may be explicitly compiled before use, or they may be evaluated directly. The
main advantage of explicitly compiling an XPath expression is to validate an expression for correct-
ness, prior to evaluation, and to promote the reuse of an expression in multiple evaluations. Let’s
assume you are interested in learning about the explicit compilation of XPath expressions, so we will
cover that next.

Explicitly Compiling an XPath Expression

Say you need an XPath object to compile an XPath expression. You can use the XPathFactory factory
class to create XPath objects. To create an XPath object, first create an XPathFactory object with the
static method newInstance() of the XPathFactory class, as shown in Listing 4-5. The newInstance()
method uses the default object model, DEFAULT _OBJECT MODEL_URI, which is based on the W3C DOM.
If you're going to use an object model other than the default,!Ocreate an XPathFactory object with
the newInstance(String uri) method. Using the specified or the default object model, create an
XPath object from the XPathFactory object using the newXPath() method, as illustrated in Listing 4-5.

Listing 4-5. Creating an XPath Object

XPathFactory factory=XPathFactory.newInstance();
XPath xPath=factory.newXPath();

Let’s assume you are interested in compiling the XPath expression /catalog/journal/
article[@date="January-2004']/title, which addresses title elements within all article
elements with the date attribute set to January-2004. You can do so with the compile() method of the
XPath object, as shown here:

XPathExpression xPathExpression=
xPath.compile("/catalog/journal/article[@date="January-2004"]/title");

This compile() method returns an XPathExpression object. If the XPath expression has an error,
an XPathExpressionException gets generated.

Evaluating a Compiled XPath Expression

The XPathExpression interface provides overloaded evaluate() methods to evaluate an XPath
expression. Table 4-2 lists the evaluate() methods in the XPathExpression interface.

Two of the overloaded evaluate() methods take a returnType as a parameter. The return types
are represented with javax.xml.xpath.XPathConstants class static fields. Table 4-3 lists the different
return types supported by the evaluate() methods, and they provide the flexibility that is needed to
convert the result of evaluating an expression to different return types. The default returnType is
javax.xml.xpath.XpathConstants.STRING.

10. This feature essentially accommodates alternative document models. Currently, there is no compelling
reason to use anything other than the DOM.

97



CHAPTER 4 ADDRESSING WITH XPATH

Table 4-2. XPathExpression evaluate() Methods

Evaluate Method Description

evaluate(InputSource source) Evaluates the compiled XPath expression in the context of
the specified InputSource and returns a string. The default
return type, XPathConstants.STRING, is used for evaluating
the XPath expression.

evaluate(InputSource source, Evaluates the compiled XPath expression in the context of

QName returnType) the specified InputSource and returns a value of the speci-
fied return type.

evaluate(Object item) Evaluates the compiled XPath expression in the specified
context, which may be a Node or a NodelList. Returns a string.

evaluate(Object item, Evaluates a compiled XPath expression in the specified

QName returnType) context and returns a value of the specified return type.

Table 4-3. XPath Return Types

Return Type Description
javax.xml.xpath.XpathConstants.BOOLEAN XPath 1.0 boolean datatype
javax.xml.xpath.XpathConstants.NODESET XPath 1.0 NodeSet datatype
javax.xml.xpath.XpathConstants.NODE XPath 1.0 Node datatype
javax.xml.xpath.XpathConstants.STRING XPath 1.0 string datatype
javax.xml.xpath.XpathConstants.NUMBER XPath 1.0 number datatype

The evaluate() methods of the XPathExpression interface evaluate in the context of either an
InputSource or a java.lang.Object that represents a DOM structure, such as an org.w3c.dom.Node
object. For the sample application, you will evaluate an XPath expression in the context of an
InputSource based on the XML document, as shown in Listing 4-6. In this code listing, xm1Document
isa java.io.File object that is associated with catalog.xml.

Listing 4-6. Creating an InputSource Object

File xmlDocument = new File("catalog.xml");
InputSource inputSource = new InputSource(newFileInputStream(xmlDocument));

Once you create an InputSource object, you can evaluate the XPath expression in the context of
this InputSource object, as shown here:

String title =xPathExpression.evaluate(inputSource);

A new InputSource object is required after each invocation of evaluate() with an InputSource
object. The result of evaluating the compiled /catalog/journal/article[@date="January-2004"]/title
XPath expression is the title: Design service-oriented architecture frameworks with J2EE technology.



CHAPTER 4 ADDRESSING WITH XPATH

Evaluating an XPath Expression Directly

As noted earlier, XPath expressions can be directly evaluated in the context of a DOM object or an
InputSource object, without any compilation. The XPath interface provides overloaded evaluate()
methods to evaluate an XPath expression directly. Table 4-4 lists the XPath interface evaluate() methods.

Table 4-4. XPath Interface evaluate() Methods

Evaluate Method Description
evaluate(String Evaluates the specified XPath expression in the context of
expression, InputSource source) the specified InputSource and returns a string. The default

return type, XPathConstants.STRING, is used for evaluating
the XPath expression.

evaluate(String expression, Evaluates the specified XPath expression in the context of
InputSource source, the specified InputSource and returns a value of the specified
OName returnType) return type.

evaluate(String expression, Evaluates the specified XPath expression in the specified
Object item) context, which may be a Node or a NodeList. Returns a string.
evaluate(String expression, Evaluates a specified XPath expression in the specified
Object item, Name returnType) context and returns a value of the specified return type.

The returnType values are the same as for the XPathExpression interface evaluate() methods
and are listed in Table 4-3.

Assume you want to find the publishers for all the journals in your XML document. The XPath
expression for addressing the node set for all publisher attributes attached to journal elements that
are not in any namespace would be /catalog/journal/@publisher. You can directly evaluate this
expression, without compilation, as shown here:

inputSource = new InputSource(new FileInputStream(xmlDocument)));
String publisher = xPath.evaluate("/catalog/journal/@publisher",inputSource);

The result of this XPath evaluation is the attribute value IBM developerWorks.

You can also use the evaluate() methods in the XPath class to evaluate a node set. Say you want
to evaluate the XPath expression //title that selects all the title elements. To select the node set of
the title element nodes in the example XML document, you need to create an XPath expression
that selects the title node and invoke the evaluate() method that takes an XPath expression, a
org.w3c.dom.Document object, and a returnType as parameters, as shown in Listing 4-7.

Listing 4-7. Retrieving a NodeSet

DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder();
Document document = builder.parse(xmlDocument);

String expression="//title";

NodeList nodes = (NodelList)xPath.evaluate(expression, document,
XPathConstants.NODESET);

XPathConstants.NODESET specifies the return type of a evaluate() method as a NodeSet. Because
the NodeSet class implements the Nodelist interface, you can cast the NodeSet object to Nodelist.

99



100

CHAPTER 4 ADDRESSING WITH XPATH

Evaluating Namespace Nodes

With J2SE 5.0, you can also access namespace nodes with XPath. You can use the NamespaceContext
interface for namespace context processing. To access namespace-based nodes within your appli-
cation, you create an implementation class for the NamespaceContext interface. Listing 4-8 shows an
example of a NamespaceContext interface implementation class with one prefix corresponding to a
namespace URI. Add the NamespaceContextImpl class as an inner class in the XPathEvaluator. java
class, as shown in Listing 4-10. For example, if you want to select the first journal node within the
example document that is part of a namespace, you need a NamespaceContextImpl class.

Listing 4-8. NamespaceContextImpl. java

/X%

* This is a private class for NamespaceContext

*/

private class NamespaceContextImpl implements NamespaceContext {
public String uri;

public String prefix;

public NamespaceContextImpl() {
}

/**
* Constructor
* @param prefix namespace prefix
* @param uri namespace uri
*/
public NamespaceContextImpl(String prefix, String uri) {
this.uri = uri;
this.prefix = prefix;

}

/%

* @param prefix namespace prefix

* @return namespace URI

*/

public String getNamespaceURI(String prefix) {
return uri;

}

/%

* set uri

* @param uri namespace uri

*/

public void setNamespaceURI(String uri) {
this.uri = uri;

}



CHAPTER 4 ADDRESSING WITH XPATH

/%
* @param uri namespace uri
* @return namespace prefix
*/
public String getPrefix(String uri) {
return prefix;

}

/¥*

* set prefix

* @param prefix namespace prefix

*/

public void setPrefix(String prefix) {
this.prefix = prefix;

}

/¥*
* One uri may have multiple prefixes.
* We will allow only one prefix per uri.
* @return an iterator for all prefixes for a uri
*/
public java.util.Iterator getPrefixes(String uri) {
if (uri == null) {
throw new IllegalArgumentException();
}
java.util.Arraylist<String> 1i = new java.util.Arraylist<String>();
if (this.uri == uri) {
li.add(prefix);

return li.iterator();

To access namespace nodes, you need to create an instance of the NamespaceContextImpl class
and set the NamespaceContext on an XPath object. To evaluate a node in the example XML document
with the journal prefix in the location path, you need to create a NamespaceContextImpl object with

the journal prefix and set this NamespaceContext object on the XPath object, as shown in Listing 4-9.

Listing 4-9. Setting the Namespace Context

NamespaceContext namespaceContext=new NamespaceContextImpl("journal",
"http://www.apress.com/catalog/journal");
xpath.setNamespaceContext(namespaceContext);

To illustrate an XPath expression evaluation with a namespace prefix, create an InputSource
object, and evaluate the XPath expression /catalog/journal:journal/article/title, as shown
here:

InputSource inputSource = new InputSource(new FileInputStream(xmlDocument));
String title = xPath.evaluate("/catalog/journal:journal/article/title",
inputSource);

The value of this title node is output to the system console as Design XML Schemas Using UML.

101



102

CHAPTER 4 ADDRESSING WITH XPATH

JAXP 1.3 XPath Example Application

This application illustrates how to use different facets of the JAXP 1.3 XPath API. In this application,
you will evaluate the XPath expressions we have already discussed individually in the code snippets
preceding this section.

The XPathEvaluator class, shown in Listing 4-10, implements a complete application. The key
method in this application class is evaluateDocument (), which combines all the code snippets we have
already discussed in detail. The main method in XPathEvaluator creates an XPathEvaluator instance
and uses the the evaluateDocument () method to evaluate various XPath expressions that address
node sets in catalog.xml, as shown here:

XPathEvaluator evaluator = new XPathEvaluator();
// create a File object based on catalog.xml
File xmlDocument = new File("catalog.xml");
evaluator.evaluateDocument (xmlDocument);

As the various node sets are retrieved, they are printed to the system console. Listing 4-11 shows
the output from the XPathEvaluator.java application in the Eclipse IDE.

Listing 4-10. XPathEvaluator. java
package com.apress.jdk5xpath;

import javax.xml.xpath.*;

import java.io.*;

import org.w3c.dom.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import javax.xml.namespace.NamespaceContext;

/**

* This class illustrates executing

* different types of XPath expressions, using JAXP 1.3
* XPath API.

*/

public class XPathEvaluator {

public void evaluateDocument(File xmlDocument) {

try {
XPathFactory factory = XPathFactory.newInstance();
XPath xPath = factory.newXPath();

// create input source for XML document
InputSource inputSource = new InputSource(new FileInputStream(
xmlDocument));

// Find the title of the first article dated January-2004,

// but first compile the xpath expression

XPathExpression xPathExpression = xPath
.compile("/catalog/journal/article[@date="January-2004"']/title");

// This returns the title value

String title = xPathExpression.evaluate(inputSource);

// Print title

System.out.println("Title: " + title);



CHAPTER 4 ADDRESSING WITH XPATH

// create input source for XML document

inputSource = new InputSource(new FileInputStream(xmlDocument));

// Find publisher of first journal that is not in any namespace.

// This time we are not compiling the XPath expression.

// Return the publisher value as a string.

String publisher = xPath.evaluate("/catalog/journal/@publisher",
inputSource);

// Print publisher

System.out.println("Publisher:

+ publisher);

// Find all titles

String expression = "//title";

// Reset XPath to its original configuration

xPath.reset();

DocumentBuilder builder = DocumentBuilderFactory.newInstance()
.newDocumentBuilder();

Document document = builder.parse(xmlDocument);

// Evaluate xpath expression on a document object and

// result as a node list.

NodeList nodelList = (Nodelist) xPath.evaluate(expression, document,
XPathConstants.NODESET);

// Tterate over node list and print titles

for (int i = 0; i < nodelist.getlength(); i++) {
Element element = (Element) nodelist.item(i);
System.out.println(element.getFirstChild().getNodeValue());

}

// This is an example of using NamespaceContext
NamespaceContext namespaceContext = new NamespaceContextImpl(
"journal"”, "http://www.apress.com/catalog/journal");

xPath.setNamespaceContext(namespaceContext);

// Create an input source

inputSource = new InputSource(new FileInputStream(xmlDocument));

// Find title of first article in first

// journal, in journal namespace

title = xPath
.evaluate("/catalog/journal:journal/article/title",

inputSource);
System.out.printIn("Title:" + title);

catch (IOException e) {
System.out.println(e.getMessage());
catch (XPathExpressionException e) {
System.out.println(e.getMessage());
catch (ParserConfigurationException e) {
System.out.println(e.getMessage());
catch (SAXException e) {
System.out.println(e.getMessage());

103



104 CHAPTER 4 ADDRESSING WITH XPATH

public static void main(String[] argv) {
XPathEvaluator evaluator = new XPathEvaluator();

File xmlDocument = new File("catalog.xml");
evaluator.evaluateDocument (xmlDocument);

}

Vi

* This is a private class for NamespaceContext

*/

private class NamespaceContextImpl implements NamespaceContext {
public String uri;

public String prefix;

public NamespaceContextImpl() {
}

/**

* Constructor

* @param prefix namespace prefix

* @param uri namespace uri

*/

public NamespaceContextImpl(String prefix, String uri) {
this.uri = uri;
this.prefix = prefix;

}

/¥*

* @param prefix namespace prefix

* @return namespace URI

*/

public String getNamespaceURI(String prefix) {
return uri;

}

/¥*

* set uri

* @param uri namespace uri

*/

public void setNamespaceURI(String uri) {
this.uri = uri,;

}

/¥*

* @param uri namespace uri

* @return namespace prefix

*/

public String getPrefix(String uri) {
return prefix;

}



CHAPTER 4 ADDRESSING WITH XPATH

Vo

* set prefix

* @param prefix namespace prefix

*/

public void setPrefix(String prefix) {
this.prefix = prefix;

}

Vo
* One uri may have multiple prefixes.
* We will allow only one prefix per uri.
* @return an iterator for all prefixes for a uri
*/
public java.util.Iterator getPrefixes(String uri) {
if (uri == null) {
throw new IllegalArgumentException();
}
java.util.Arraylist<String> 1i = new java.util.Arraylist<String>();
if (this.uri == uri) {
li.add(prefix);

return li.iterator();

Listing 4-11. XPathEvaluator. java

Title: Design service-oriented architecture
frameworks with J2EE technology
Publisher:IBM developerWorks
Design XML Schemas Using UML
Design service-oriented architecture
frameworks with J2EE technology
Advance DAO Programming
Title:Design XML Schemas Using UML

JDOM XPath API

TheJDOM API org.jdom.xpath.XPath class supports XPath expressions to select nodes from an XML
document. The JDOM XPath class is easier to use if you are going to select namespace nodes. Table 4-5
lists some of the methods in the JDOM XPath class.

In this section, you’ll see how to select nodes from the example XML document in Listing 4-1
using the JDOM XPath class. Because the XPath class is in the org. jdom.xpath package, you need to
import this package.

105



106

CHAPTER 4 ADDRESSING WITH XPATH

Table 4-5. JDOM XPath Class Methods

XPath Class Method

Description

selectSingleNode(java.lang.0Object context)

selectSingleNode(java.lang.Object context,
java.lang.String xPathExpression)

selectNodes(java.lang.Object context)

selectNodes(java.lang.Object context,
java.lang.String xPathExpression)

addNamespace(java.lang.String prefix,
java.lang.String uri)

Selects a single node that matches a wrapped
XPath expression in the context of the speci-
fied node. If more than one node matches the
XPath expression, the first node is returned.

Selects a single node that matches the
specified XPath expression in the context
of the specified node. If more than one
node matches the XPath expression, the
first node is returned.

Selects nodes that match a wrapped
XPath expression in the context of the
specified node.

Selects nodes that match the specified
XPath expression in the context of the
specified node.

Adds a namespace to navigate
namespace nodes.

You need a context node to address an XML document with XPath. Therefore, create a SAXBuilder,
and parse the XML document catalog.xml with SAXBuilder. SAXBuilder has the overloaded build()
method, which takes a File, InputStream, InputSource, Reader, URL, or system ID string object as
input for parsing an XML document:

SAXBuilder saxBuilder = new SAXBuilder("org.apache.xerces.parsers.SAXParser");
org.jdom.Document jdomDocument =saxBuilder.build(xmlDocument);

xmlDocument is the java.io.File representation of the XML document catalog.xml. The static
method selectSingleNode(java.lang.0bject context, String XPathExpression) selects a single
node specified by an XPath expression. If more than one node matches the XPath expression, the
first node that matches the XPath expression gets selected. As an example, select the attribute node
level of the element article in a journal with the title set to Java Technology and with the article
attribute date set to January-2004, with an appropriate XPath expression, as shown in Listing 4-12.

Listing 4-12. Selecting an Attribute Node

org.jdom.Attribute levelNode =
(org.jdom.Attribute) (XPath.selectSingleNode(
jdomDocument,
"/catalog//journal[@title="JavaTechnology']" +
"//article[@date="January-2004"]/@level"));

The level attribute value Advanced gets selected.

You can also use the selectSingleNode(java.lang.0bject context, String XPathExpression)
method to select an element node within an XML document. As an example, select the title
node for article with date January-2004 and with the XPath expression /catalog//journal//
article[@date="January-2004"]/title, as shown in Listing 4-13.



CHAPTER 4 ADDRESSING WITH XPATH

Listing 4-13. Selecting an Element Node with the selectSingleNode() Method

org.jdom.Element titleNode =
(org.jdom.Element) XPath.selectSingleNode( jdomDocument,
"/catalog//journal//article[@date="January-2004"']/title");

The title node with the value Design service-oriented architecture frameworks with J2EE
technology gets selected.

The static method selectNodes(java.lang.Object context, String XPathExpression) selects
all the nodes specified by an XPath expression. As an example, you can select all the title nodes
for non-namespace journal elements with a title attribute set to Java Technology, as shown in
Listing 4-14.

Listing 4-14. Selecting Element Nodes with the selectNodes () Method

java.util.List nodelist =
XPath.selectNodes(jdomDocument,
"/catalog//journal[@title="Java Technology']//article/title");

You can iterate over the node list obtained in Listing 4-14 to output values for the title
elements. This will output the title element values Design service-oriented architecture
frameworks with J2EE technology and Advance DAO Programming:

Iterator iter = nodelist.iterator();
while (iter.hasNext()) {
org.jdom.Element element = (org.jdom.Element) iter.next();
System.out.println(element.getText());

The JDOM XPath class supports the selection of nodes with namespace prefixes. To select a node
with a namespace prefix, create an XPath wrapper object from an XPath expression, which has a
namespace prefix node, and add a namespace to the XPath object. For example, create an XPath wrapper
object with a namespace prefix expression of /catalog/journal:journal/article/@journal:1level. The
XPath wrapper object is created with the static method newInstance(java.lang.String path), which
also compiles an XPath expression. You can add a namespace to the wrapper XPath object using the
addNamespace(String prefix, String uri) method, as shown in Listing 4-15.

Listing 4-15. Adding Namespace to an XPath Object

XPath xpath = XPath.newInstance( "/catalog/journal:journal/article/@journal:level");
xpath.addNamespace("journal™, "http://www.apress.com/catalog/journal ");

In Listing 4-15, the XPath expression, which includes a namespace prefix node, gets compiled,
and a namespace with the prefix journal gets added to the XPath object. With the jdomDocument node
as the context node, select the node specified in the XPath expression with the
selectSingleNode(java.lang.Object context) method, as shown here:

org.jdom.Attribute namespaceNode =
(org.jdom.Attribute) xpath.selectSingleNode(jdomDocument);

The attribute node journal:level gets selected. You can output the value of the selected
namespace node. If you do so, the Intermediate value gets output.

107



108 CHAPTER 4 ADDRESSING WITH XPATH

JDOM XPath Example Application

Now let’s look at a complete application where you combine all the JDOM XPath code snippets you
have examined so far into a single application. The JDomXPath class, shown in Listing 4-16, imple-
ments this complete application. We've already discussed all the code in the JDomXPath class’s
parseDocument () method in detail. The main() method in the JDomXPath class creates an JDomXPath
instance and uses the parseDocument () method to evaluate various XPath expressions that address
node sets in catalog.xml, as shown here:

JDomXPath parser = new JDomXPath();
parser.parseDocument(new File("catalog.xml"));

As the various node sets are retrieved, they are printed to the system console. Listing 4-17 shows
the output from running the JDomXPath. java application in the Eclipse IDE.

Listing 4-16. JDomXPath. java

package com.apress.jdomxpath;

import java.io.*;

import org.jdom.*;

import org.jdom.xpath.XPath;
import org.jdom.input.*;
import java.util.Iterator;

/**

* This class illustrates executing different types of XPath expressions,
* using JDOM 1.0 XPath API.

*/

public class JDomXPath {

public void parseDocument(File xmlDocument) {

try {

// Create a SAXBuilder parser

SAXBuilder saxBuilder = new SAXBuilder(
"org.apache.xerces.parsers.SAXParser");

// Create a JDOM document object

org.jdom.Document jdomDocument = saxBuilder.build(xmlDocument);

// select level attribute in first article dated January 2004
// in first journal
org.jdom.Attribute levelNode = (org.jdom.Attribute) (XPath
.selectSingleNode(jdomDocument,
"/catalog//journal//article[@date="January-2004"']/@level"));

System.out.println(levelNode.getValue());

// select title attribute in first article dated January 2004
// in first journal
org.jdom.Element titleNode = (org.jdom.Element) XPath
.selectSingleNode(jdomDocument,
"/catalog//journal//article[@date="January-2004"']/title");



CHAPTER 4 ADDRESSING WITH XPATH

System.out.println(titleNode.getText());

// select title of all articles

// in journal dated Java Technology

java.util.List nodelist = XPath.selectNodes(jdomDocument,
"/catalog/journal[@title="Java Technology']/article/title");

Iterator iter = nodelist.iterator();

while (iter.hasNext()) {
org.jdom.Element element = (org.jdom.Element) iter.next();
System.out.println(element.getText());

}

// Example of a xpath expression using namespace
// Select level attribute in journal namespace
// in first article in first journal in journal namespace
XPath xpath = XPath
.newInstance("/catalog/journal:journal/article/@journal:level”);
xpath.addNamespace("journal",
"http://www.apress.com/catalog/journal");

org.jdom.Attribute namespaceNode = (org.jdom.Attribute) xpath
.selectSingleNode(jdomDocument);

System.out.println(namespaceNode.getValue());

} catch (IOException e) {
e.printStackTrace();
}

catch (JDOMException e) {
e.printStackTrace();
}

}

public static void main(String[] argv) {
JDomXPath parser = new JDomXPath();
parser.parseDocument (new File("catalog.xml"));

}

Listing 4-17. Output from JDomXPath. java

Advanced
Design service-oriented architecture

frameworks with J2EE technology
Design service-oriented architecture

frameworks with J2EE technology
Advance DAO Programming
Intermediate

109



110

CHAPTER 4 ADDRESSING WITH XPATH

Summary

The XPath language is key to addressing parts of an XML document using imperative expressions.
XPath is a fundamental technology that is used in a number of other XML technologies that we will
cover later in this book. Examples of technologies that use XPath include XSL Transformations
(XSLT) and Java Architecture for XML Binding (JAXB), both covered in this book.

In this chapter, we covered the JAXP 1.3 XPath and JDOM XPath APIs. The JAXP 1.3 XPath AP],
by virtue of the fact that it is completely standards based, should be the preferred approach. However,
the JDOM API is simpler to use and may eventually become part of a standard, so it’s worth investigating.



CHAPTER 5

Transforming with XSLT

XSL Transformations (XSLT)! is part of the Extensible Stylesheet Language (XSL)2 family of W3C
Recommendations. The XSL family includes the following specifications:

* The XPath specification defines syntactic constructs for addressing various node sets within
an XML document.

* TheXSL Formatting Objects (XSL-FO) specification defines an XML vocabulary for expressing
formatting semantics.

e The XSLT specification specifies a language for transforming XML documents into other
XML documents.3

The original use case that prompted XSLT was this: transform a given XML document into a
related XML document that specifies formatting semantics in the XSL-FO vocabulary. Even though
XSLT was originally developed to address this specific use case, XSLT was also designed for transfor-
mations that have nothing to do with XSL-FO. In fact, because XSL-FO is a topic unto itself that is
beyond the scope of this book, in this chapter we will focus only on XSLT transformations that are
independent of XSL-FO.

XSLT language constructs are completely based on XML. Therefore, transformations written in
XSLT exist as well-formed XML documents. An XML document containing XSLT transformations is
commonly referred to as a style sheet. This is because the original use case that prompted XSLT was
related to the formatting of XML documents.

An XSLT style sheet merely specifiesa set of transformations. Therefore, youneed an XSLT processor
to apply these transformations to a given XML document. An XSLT processor takes an XML document
and an XSLT style sheet as inputs, and it transforms the given XML document to its target output,
according to transformations specified in the style sheet. The target output of XSLT transformations
is typically an XML document but could be an HTML document or any type of text document. Two
commonly used XSLT processors are Xalan-Java* and Saxon.5 To use an XSLT processor, you need a
set of Java APTs, and TrAX% is precisely such an API set. In the following sections, we will first provide
an overview of XSLT and then cover TrAX.

The XSLT specification is available at http://www.w3.0rg/TR/xslt.

The XSL family of recommendations is available at http://www.w3.0org/Style/XSL/.

As you will learn in this chapter, XSLT is applicable beyond this original specification goal.
Xalan-Java information is available at http://xml.apache.org/xalan-j/.

Saxon information is available at http://saxon.sourceforge.net/.

The TrAX API is part of JAXP 1.3; it has been part of JAXP since version 1.1.

S oD

111



112

CHAPTER 5 TRANSFORMING WITH XSLT

Overview of XSLT

Before you look at the XSLT language syntax and semantics in detail, you will first see a simple
example so you can develop an intuitive understanding of XSLT transformations.

Simple Example

Assume you have an XML document that describes a catalog of journals, as shown in Listing 5-1.

Listing 5-1. Example Source Document

<catalog>

<journal title="XML Journal" />

<journal title="Java Developer Journal" />
</catalog>

This XML document is the source document, and Figure 5-1 shows the corresponding source tree.

[D] #document

= [&] catalog

B #text

= [&] journal
[@] title=%ML Journal
B #text

= [&] journal
E title=lava Developer Journal
B #text

Figure 5-1. Example source tree

Now, further assume you want to transform this catalog document into an HTML document
that displays all the magazine titles, or journals, in a table, as shown in Listing 5-2.

Listing 5-2. Example Result Document

<html>
<body>
<table>
<tr><th>Titles</th></tr>
<tr><td>XML Journal</td></tr>
<tr><td>Java Developer Journal</td></tr>
</table>
</body>
</html>

This HTML document is the result document, and Figure 5-2 shows the corresponding result tree.



CHAPTER 5 TRANSFORMING WITH XSLT

[D] #document
= [2] html
= [&] body
= [&]table
= [e]tr
= [@th
B #text
= [e]tr

ENE
B #text
2 [e]tr

= [2]td

B #text

Figure 5-2. Example result tree

Having looked at what you want to do, the obvious question is, what XSLT style sheet will trans-
form the source tree in Figure 5-1 to the result tree in Figure 5-2? Listing 5-3 shows one possible XSLT
style sheet that will accomplish this transformation.

Listing 5-3. Example XSLT Style Sheet

<?xml version='1.0" encoding="UTF-8' ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >
<xsl:output encoding="UTF-8" method="xml" omit-xml-declaration="yes" />
<xsl:template match="/" >
<html>
<body>
<table>
<tr><th>Titles</th></tr>
<xsl:for-each select="catalog/journal" >
<tr><td>
<xsl:apply-templates select="."
</td></tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

></xsl:apply-templates>

<xsl:template match="journal" >
<xsl:value-of select="@title" />
</xsl:template>

</xsl:stylesheet>

If you now examine the style sheet in Listing 5-3 from an intuitive standpoint, you may notice
the following interesting facts:

¢ This style sheet is a well-formed XML document.

* Elements with the xs1 prefix belong to the http://www.w3.0rg/1999/XSL/Transform namespace
and are part of the XSLT language instruction set (well, you may not know that for a fact, but
you may suspect that).

e Elements without the xs1 prefix, such as the table element, are copied unchanged from the
source tree to the result tree.

113



114

CHAPTER 5 TRANSFORMING WITH XSLT

¢ The output method is specified as xml, but the result document is instructed not to have any
xml declaration: you may intuitively infer that the <xs1:output encoding="UTF-8" method="xml"
omit-xml-declaration="yes" /> instruction in the XSLT style sheet accomplishes these
objectives.

e The xsl:template instructions in the style sheet contain an attribute named match, whose
value is an XPath expression. The xs1:apply-templates instructions in the style sheet contain
an attribute named select, whose value is also an XPath expression. We will explain all this
in detail in a moment; for now, you are just trying to develop an intuitive understanding.

¢ Not all nodes from the source tree appear in the result tree. In fact, only the value of the title
attribute node from the source tree appears as a text node in the result tree.

¢ The result tree contains many elements that are not present in the source tree.

From these points, you may be able to quickly surmise that a style sheet is a well-formed XML
document that contains a mix of XSLT instructions and literal XML content. With a little bit of thought,
you may also be able to surmise that XSLT instructions within the style sheet use XPath expressions
to address source tree nodes and then apply some transformations to these source nodes to produce
the result tree. Finally, you may be able to easily infer that the literal XML content in the source tree
gets copied into the result tree, unchanged; so far, so good. However, we suspect that at this point
you want to know exactly how the transformations are specified and how a processor processes
them. So, let’s dive into those details next.

XSLT Processing Algorithm

You specify XSLT transformations through a combination of templates and instructions. A template
construct is comprised of instructions and literal content in a target document. You can define
instructions inside or outside a template construct. For example, the following template, from the
style sheet in Listing 5-3, contains a single <xsl:value-of select="@title" /> instruction:

<xsl:template match="journal" >
<xsl:value-of select="@title" />
</xsl:template>

Each template is associated with a specific pattern, which is given by the value of the match
attribute. The pattern for the simple template shown previously is journal. This means the template
is applicable to all nodes with the name journal.

Each instruction operates on a node set selected from the source tree. When an XSLT processor
is asked to transform a source document using an XSLT style sheet, the processor essentially follows
this algorithm:

1. It parses the style sheet and the source document into their respective node trees.

2. It executes an implicit instruction, <xsl:apply-templates select="/" />.This instruction
has a select attribute with an XPath expression value of /. This XPath expression evaluates to
anode set containing the source tree document element. Therefore, this instruction selects
the source tree document element as the current node set and scans the style sheet node tree
for an xs1:template instruction with a match attribute that matches the source tree document
element. If such a template is found, this template is instantiated as the template for the
result tree root node. If no such template is found, another implicit rule continues recursive
processing by selecting each child node of the root node and looking for a matching tem-
plate for each selected child node (and so on, recursively), until a matching template is
found. For example, in the example style sheet in Listing 5-3, the <xs1:template match="/" >
template will match the implicit instruction.



CHAPTER 5 TRANSFORMING WITH XSLT

3. From this point, as each template is instantiated in the result tree, it is in turn processed. Literal
elements in the template are copied unchanged into the result tree. For each XSLT instruction
found in an instantiated template, the processing continues as described in the next step. For
example, in the <xs1:template match="/" > template in Listing 5-3, HTML elements are literal
content that is copied unchanged, and <xs1:for-each select="catalog/journal" > isan
example of an XSLT instruction that continues the processing described in the next step.

4. For each xsl:apply-templates instruction found in an instantiated template, the select
attribute’s XPath expression value is used to select a node set from the source tree. For
each node in the selected node set, the processor scans the style sheet for a matching
xsl:template, and if an xs1:template is found, it is instantiated in the result tree, and the
processing continues. If more than one matching xs1:template is found for a node in the
current node set, it is considered an error. However, the processor may choose to ignore the
error and pick one of the matching templates and instantiate it. This may be a source of
inconsistent behavior across different processors. Note, the algorithm for an xs1:template
match does not require that the select attribute value and the match attribute value have to
be the same. For example, in the <xs1:apply-templates select="." > instruction in Listing 5-3,
the select value matches the <xsl:template match="journal" > template, as discussed in
detail in the next step.

5. Foreach xsl:for-each instruction found in an instantiated template, the select attribute’s
XPath expression value is used to select a node set from the source tree. For each node in
the selected node set, the body of the xs1:for-each instruction is instantiated into the
result tree and processed. For example, the <xsl:for-each select="catalog/journal" >
instruction in Listing 5-3 iterates over the node set of all the journal elements and
executes the body of the for loop for each journal element. The body of the for loop is
the <xsl:apply-templates select="." >instruction. The select value of this instruction
matches the <xsl:template match="journal" > template, because this instruction gets
executed in an xs1:for-eachloop, where each iteration of the loop selects a different journal
element. And the <xsl:value-of select="@title" /> instruction within
<xsl:template match="journal" > prints the value of each journal’s title attribute.

With this basic understanding of the processing algorithm in place, you are ready to look at how
transformations are specified, which you will do next.

XSLT Syntax and Semantics

The following sections highlight XSLT syntax and semantics.

xsl:stylesheet Element

The root element in an XSLT style sheet is xs1:stylesheet, where xs1 is the prefix associated with
the XSLT namespace URI http://www.w3.0rg/1999/XSL/Transform. You can use a prefix other than
xs1, of course, as long as it is associated with the correct namespace URI. Attributes of the stylesheet
element are id, version, extension-element-prefixes, and exclude-result-prefixes. The version
attribute specifies the XSLT version, which may be either 1.0 or 1.1.7 This attribute must be specified.
We will use version 1.0, because, at this point, it is the only version that is a W3C Recommendation,
and it is the version supported in the Java API for the XML (JAXP) 1.3 specification. The
extension-element-prefixes attribute specifies namespace prefixes for extension elements. The
exclude-result-prefixes attribute specifies namespace prefixes that are to be excluded from the
output. Listing 5-4 shows an example xsl:stylesheet element.

7. Version 1.1 was abandoned as a W3C Working Draft in August 2001 (http://www.w3.0rg/TR/xs1t11/).

115



116

CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-4. xs1:stylesheet

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
exclude-result-prefixes = "jaxb"
version ="1.0" >
</xsl:stylesheet>

xsl:output Element

The xs1:output element, a subelement of the xs1:stylesheet element, specifies features of the
result tree output. Some of the attributes of the xs1:output element are method, version, encoding,
omit-xml-declaration, doctype-public, doctype-system, and indent. These attributes work as follows:

¢ The method attribute specifies the result tree type and may have the value xml, html, or text.
You can also specify other output method types.

e The version attribute specifies the version in the XML declaration in the generated output
document.

o Ifomit-xml-declaration is setto yes, the XML declaration is omitted from the output
document.

* The encoding attribute specifies the encoding of the document generated.

* doctype-public specifies the public identifier in the DOCTYPE declaration, which was discussed
in Chapter 1.

* The doctype-system attribute specifies the system identifier in the DOCTYPE declaration. If the
indent attribute is set to yes, the output is indented.

Listing 5-5 shows an example xs1:output element.

Listing 5-5. xs1:output

<xsl:output
method = "xml"
version = "1.0"
encoding = "utf-8"
omit-xml-declaration = "no"
doctype-public ="-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
doctype-system ="http://java.sun.com/dtd/ejb-jar_2_0.dtd"
indent = "yes" />

xsl:template Element

As noted, the xs1:template element is the core of XSLT, and each xs1:template is associated with a
pattern, expressed as an XPath expression. Two important attributes of the xs1:template element
are match and name. The match attribute specifies the pattern to match; the name attribute identifies a
template by name. The match attribute is required unless the name attribute is specified, in which
case it is optional. An example of an xs1:template element is as follows:

<xsl:template match="journal" >
<xsl:value-of select="@title" />
</xsl:template>

The XPath pattern in the match attribute in the previous example matches the node set of all the
journal elements in the example source document shown in Listing 5-1. If you recall, it is the body



CHAPTER 5 TRANSFORMING WITH XSLT 117

of the xs1:for-each instruction in the Listing 5-3 loop that iterates over each journal element
and, through the <xsl:apply-templates select="." > instruction, selects and applies the template

shown previously.

xsl:apply-templates Element

You can use the xs1:apply-templates element to select a node set from the source tree. Along with
the xs1:for-each instruction, it is one of the two key instructions used to change the current node
set. The select attribute of the xs1:apply-templates element specifies an XPath expression that
evaluates to a node set in the context of the source tree. If the XPath expression is a relative expression,
it is evaluated with respect to the current processing node. If the select attribute is omitted, all the
child nodes of the current processing node are processed. Listing 5-6 shows an example of an
xsl:apply-templates element within an xs1:template element.

Listing 5-6. xs1:apply-templates

<xsl:template match="/" >
<html>
<body>
<table>
<tr><th>Titles</th></tr>
<xsl:for-each select="catalog/journal" >
<tr><td>
<xsl:apply-templates select="."
</td></tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

></xsl:apply-templates>

In Listing 5-6, the xs1:apply-templates instruction selects child journal nodes of the current
catalog element, tries to find a matching template in Listing 5-3 for the selected journal node,
and then applies the matched template. Earlier we discussed the matched template for this
xsl:apply-templates instruction.

xsl:call-template Element

If you specify the name attribute in an xs1:template element, you can invoke the template with the
xsl:call-template element. Listing 5-7 shows an example of xs1:call-template.

Listing 5-7. xs1:call-template

<xsl:template name="template1">
</xsl:template>

<xsl:call-template name="template1">
</xsl:call-template>

The difference between xs1:call-template and xsl:apply-template is that the former is an
explicit call to anamed xs1:template element where the match attribute is irrelevant; the latter is an
implicit call that depends on a match between the select attribute in xs1:apply-template and the
match attribute in xs1:template.



118

CHAPTER 5 TRANSFORMING WITH XSLT

xsl:for-each Element

For iterating over a node set, you can use the xs1: for-each element. Listing 5-8 shows an example of
xs1l:for-each, which is an excerpt from Listing 5-3.

Listing 5-8. The xs1: for-each Element

<xsl:for-each select="catalog/journal" >
<tr><td>
<xsl:apply-templates select="." ></xsl:apply-templates>
</td></tr>
</xsl:for-each>

In the example xs1:for-each element, the select attribute evaluates to a node set of journal
elements in the document shown in Listing 5-1. For each node in this node set, the body of the
xsl:for-each instruction is processed.

Variables

You can specify variables in XSLT with xs1:variable and xs1:param elements. The xsl:variable
and xs1:param elements have the attributes name and select. You specify the value of a variable or a
parameter in the select attribute or in the element. For example, you can specify a variable with the
value var1 as follows:

<xsl:variable name="var1" select="'vari'"/>

or as follows:
<xsl:variable name="vari"s>vari</xsl:variable>

You can specify a parameter similarly:

<xsl:param name="parami" select="'parami'"/>

A difference between a parameter and a variable is that the value specified in the xs1:param
element is the default value and may be overridden when a template is invoked. You can specify a
parameter value with the xs1:with-param element. Listing 5-9 shows an example of overriding the
default parameter value.

Listing 5-9. Applying Templates with Parameter Values

<xsl:apply-templates>
<xsl:with-param name="param1" select=
</xsl:apply-templates>

param1'"/>

You can declare xsl:variable and xs1:param elements at the top level or in a template. Another
difference between xs1:param and xsl:variable is that you can declare an xs1:param element in an
xsl:template element only at the beginning of the template.



CHAPTER 5 TRANSFORMING WITH XSLT

Conditional Processing

The XSLT specification provides the xs1:if and xs1:choose elements for conditional processing. The
attribute named test of the xs1:if element evaluates to a boolean value and controls conditional
processing. Listing 5-10 shows an example of an xs1:if element.

Listing 5-10. Conditional Application of the Template

<xsl:if test="$parami="parami'">
<xsl:apply-templates/>
</xsl:if>

The test attribute in Listing 5-10 compares the value of the param parameter with the string
paramil. If the test expression evaluates to true, <xsl:apply-templates/> is invoked.

xsl:copy-of Element

You can select elements in a result tree from the source tree, or you can add new elements. You can
copy a source tree fragment to the result tree with the xs1:copy-of element. xs1:copy-of copies the
selected element node, the attributes of the element, and the subelements of the element. The following
is an example of xs1:copy-of:

<xsl:copy-of select="catalog/journal"/>

The xs1:copy element copies a selected node, but any attributes and subelements of the node
are not copied.

xsl:value-of Element

The xsl:value-of element adds a text node in the result tree. The xs1:value-of element’s select
attribute expression evaluates to a string. The following is an example of an xs1:value-of element
that evaluates the string value of a title attribute of a journal element:

<xsl:value-of select="journal/@title" />

Adding Elements Attributes and Text

You can add elements to a result tree with the xs1:element element. The following is an example of
xsl:element that creates a table element:

<xsl:element name="table">
</xsl:element>

You can add attributes to a result tree with the xs1:attribute element. The following is an
example of the xs1:attribute element that creates the attribute title:

<xsl:attribute name="title" >XML Journal</xsl:attribute>

You can add a text node to a result tree with the xs1:text element. The body of this element
specifies the text node in the result tree.

119



120 CHAPTER 5 TRANSFORMING WITH XSLT

Setting Up the Eclipse Project

In this chapter, we will show how to transform an example XML document, listed in Listing 5-11,
using various XSLT style sheets; each style sheet will demonstrate a specific transformation example.
In these style sheets, duplicate elements in catalog.xml will be removed, title elements will be
sorted, and various nodes will be filtered.

Listing 5-11. catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns=" http://www.apress.com/catalog/journal">
<journal title="Java Technology" publisher="IBM developerWorks">

<article level="Intermediate" date="January-2004"
section="Java Technology">

<title>Service Oriented Architecture Frameworks</title>
<author>Naveen Balani</author>
</article>

<article level="Advanced" date="October-2003" section="Java Technology">
<title>Advanced DAO Programming</title>
<author>Sean Sullivan</author>

</article>

<article level="Advanced" date="May-2002" section="Java Technology">
<title>Best Practices in EJB Exception Handling</title>
<author>Srikanth Shenoy</author>

</article>

</journal>
</catalog>

Before you can build and run the code examples included in this chapter, you need an Eclipse
project. The quickest way to create an Eclipse project is to download the Chapters5 project from the
Apress website (http://www.apress.com) and import this project into Eclipse. This will create all the
Java packages and files needed for this chapter automatically

In this chapter, we will show how to use the JAXP 1.3 TrAX APIs included in J2SE 5.0 Therefore,
you need to install the J2SE 5.08 SDK and set its JRE system library as the JRE system library in your
Eclipse project Java build path. You can do this by right-clicking the Eclipse project name in the
Package Explorer, choosing Properties, selecting the Java Build Path to Libraries tab, and clicking the
Add Library button. Figure 5-3 shows all the files and folders in the Chapters5 project.

8. You can find information about J2SE 5.0 at http://java.sun.com/j2se/1.5.0/.



CHAPTER 5 TRANSFORMING WITH XSLT 121

HER-
B2 sre
B com.apress.xslt
B[] ®SLTTransformer.java
[#-E, JRE System Library [JRES.0]
catalog.xml
----- [ catalogz. il
- [¥] copy.xslt
createElement. xslt
filter xslt
htmiTransFarm,:«slt
identity Transform, xslt
indent.xslt
merge. xslt
removeDuplicates, xslt
sort, sl
xpath.xslt

[3<] <] o< <] <] <] <] <] <] o

Figure 5-3. Chapters project directory structure

JAXP 1.3 Transformation APIs

TrAX is specified in JAXP 1.3 and included in J2SE 5.0. You use the TrAX APIs to transform an XML
document by applying an XSLT style sheet to an input XML document. The output from a transfor-
mation application can be XML, HTML, or text. The transformation APIs are organized into the
following packages:

* The generic transformation APIs are in the javax.xml.transform package.

e The stream- and URI-specific transformation APIs, which you use to specify stream-based
input and output for a transformation application, are in the javax.xml.transform.stream
package.

e The DOM-specific transformation APIs, which you use to specify DOM-based input and
output to a transformation application, are in the javax.xml.transform.dom package.

» The SAX 2-specific transformation APIs, which you use to specify SAX-based input and
output to a transformation application, are in the javax.xml.transform.sax package.

Table 5-1 lists the basic classes in the javax.xml.transform package.

Table 5-1. Classes in the javax.xml. transform Package

Class Name Description

TransformerFactory A factory class for generating Transformer objects

Transformer A class to transform a source tree to a result tree

Source An interface that defines an input source for an input XML document or

an input XSLT style sheet
Result An interface that defines a transformation result tree

OutputKeys Specifies output properties for a Transformer object




122 CHAPTER 5 TRANSFORMING WITH XSLT

With the only ordering constraint that both an input source and a result tree holder have to be
ready before a transformer is applied to an input source, the conceptual steps in the use of transfor-
mation APIs are as follows:

1. Create an instance of a transformer factory.

2. Use the factory to create an instance of a transformer based on an input source for an XSLT
style sheet definition.

3. Configure the transformer for error handling.

4. Create an input source from the input XML document. The input source can be based on an
input stream or a document object tree.

5. Define a holder for the result tree; the holder can be a stream or a document object.
6. Apply the transformer to the input source to obtain the result tree in its holder.
The main class for transforming a source tree to a result tree is the Transformer class. You use

the TransformerFactory class to generate Transformer objects. The TransformerFactory class is
instantiated with the static method newInstance():

TransformerFactory factory=TransformerFactory.newInstance();

The default TransformerFactory implementation class that is instantiated is org.apache.
xalan.processor.TransformerFactoryImpl. You can use the following lookup procedure to obtain
a TransformerFactory implementation class:

1. Use the system property javax.xml.transform.TransformerFactory.

2. Use the javax.xml.transform.TransformerFactory property value in the 1ib/jaxp.
properties file in the JRE directory.

3. Use the Services API to obtain the class name from the META-INF/services/javax.xml.
transform.TransformerFactory file.

4. Use the platform default TransformerFactory instance.
You can obtain a Transformer object from a TransformerFactory object with the

newTransformer (Source xsltSource) method. To apply an XSLT style sheet to an XML document,
obtain an XSLT Source object with the StreamSource class, as shown in Listing 5-12.

Listing 5-12. Creating a Transformer Object

StreamSource xsltSource=new StreamSource(new File ("sort.xslt"));
Transformer transformer=factory.newTransformer(xsltSource);

You can also obtain a Transformer object from a Templates object, which is a representation of
the transformations in an XSLT style sheet. To use the Templates interface to obtain a Transformer
object, create a Templates object from a TransformerFactory object and create a Transformer object
from the Templates object, as shown in Listing 5-13.

Listing 5-13. Creating a Trans former Object from a Templates Object

Templates templates=factory.newTemplates(xsltSource);
Transformer transformer=templates.newTransformer();

You can set the output properties on a Transformer object with the
setOutputProperty(String name, String value) method. You specify the Transformer output



CHAPTER 5 TRANSFORMING WITH XSLT

properties string constants in the OutputKeys class. Table 5-2 lists the string constants specified in
the OutputKeys class.

Table 5-2. Output Properties

Static Field Description

DOCTYPE_PUBLIC Specifies the public identifier for a DOCTYPE declaration.

DOCTYPE_SYSTEM Specifies the system identifier for the DOCTYPE identifier.

ENCODING Specifies the encoding for the XML document.

INDENT Value can be yes or no. If the INDENT property is set to yes, the
output is indented.

METHOD Value can be xml, html, or text. Other non-namespaced values
can also be specified. Specifies the method used to construct the
result tree.

OMIT_XML_DECLARATION Value can be yes or no. To omit the XML declaration from an

output XML document, specify the value as yes.

VERSION Specifies the output version. If the output method is set to xml,
the default version is 1.0. If the output method is set to html, the
default version is 4.0.

You can register an ErrorListener with a Transformer object to output transformation errors.
To register error handling with a Transformer, create an implementation class for ExrrorListener, as
shown in Listing 5-14.

Listing 5-14. Errorlistener Implementation Class

private class ErrorListenerImpl implements ErrorListener {
public TransformerException e = null;

public void error(TransformerException exception) {
this.e = exception;

}

public void fatalkError(TransformerException exception) {
this.e = exception;

}

public void warning(TransformerException exception) {
this.e = exception;
}
}

To register an error handler with a Transformer object, create an error handler object. With the
setErrorListener(ErrorListener) method, register the error handler with a Transformer object, as
shown in Listing 5-15.

123



124

CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-15. Setting ErrorListener

ErrorListenerImpl errorHandler=new ErrorlListenerImpl();
transformer.setErrorListener(errorHandler);

An XML source tree is transformed to a result tree with the
transform(Source source, Result result) method. The Source object can be a DOMSource, a
SAXSource, or a StreamSource. The Result object may be a DOMResult, a SAXResult, or a StreamResult.
To use a DOMSource object, obtain a Document object from a DocumentBuilder parser class, as shown in
Listing 5-16.

Listing 5-16. Creating a DOMSource Object

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(new File("catalog.xml"));
DOMSource domSource=new DOMSource(document);

To output to a StreamResult, create a StreamResult object. Transform the input XML document
with the transform() method, as shown in Listing 5-17.

Listing 5-17. Transforming the Source Tree to a Result Tree

StreamResult streamResult=new StreamResult(System.out);
transformer.transform(domSource, streamResult);

TrAX Application

In the previous section, we discussed TrAX. In this section, we will use a transformation application
built using TrAX to demonstrate some examples of XSLT transformations. We’ll use the example
XML document shown in Listing 5-11 as input for the XSLT transformations.

We'll use a generic Java application called XSLTTransformer. java, shown in Listing 5-18, for all
the transformation examples. XSLTTransformer. java takes a style sheet and an XML document as
input and transforms the XML document with the transformations specified in the style sheet. The
TrAX application, XSLTTransformer, parses the example XML document, catalog.xml, and creates a
Document object. It then transforms the Document object with a style sheet using Transformer object.
An ErrorListener is set on the Transformer object to output transformation errors.

You can run the TrAX application, XSLTTransformer. java, with different XSLT style sheets by
setting the style sheet in the stylesheet File object to the required XSLT. For example, to sort elements
in the input XML document, set the style sheet to sort.xslt, as shown here:

File stylesheet = new File("sort.xslt");

We've discussed most of the code in Listing 5-18 in the preceding sections; in addition, it is
annotated with comments.

Listing 5-18. XSLTTrans former. java

package com.apress.xslt;

import javax.xml.parsers.*;
import org.xml.sax.*;

import org.w3c.dom.*;

import javax.xml.transform.*;
import javax.xml.transform.dom.*;



CHAPTER 5 TRANSFORMING WITH XSLT 125

import javax.xml.transform.stream.*;
import java.io.*;

public class XSLTTransformer {

public static void main(String argv[]) {

try {
//Create a DocumentBuilderFactory
DocumentBuilderFactory factory=
DocumentBuilderFactory.newInstance();
//Create File object for input XSLT and
// example XML document
File stylesheet = new File("identityTransform.xslt");
File datafile = new File("catalog.xml");
//Create DocumentBuilder object
DocumentBuilder builder = factory.newDocumentBuilder();
//Parse example XML Document
Document document = builder.parse(datafile);
//Create a TransformerFactory object
TransformerFactory tFactory = TransformerFactory.newInstance();

//Create a Stylesource object from the stylesheet File object
StreamSource stylesource = new StreamSource(stylesheet);

//Create a Transformer object from the StyleSource object
Transformer transformer = tFactory.newTransformer(stylesource);
//Create a DOMSource object from an XML document

DOMSource source = new DOMSource(document);
//Create a StreamResult object to output the result of a transformation.
StreamResult result = new StreamResult(System.out);

//Create a ErrorlListener and set the ErrorListener on the Transformer
XSLTTransformer xsltTransformer = new XSLTTransformer();
ErrorListenerImpl errorHandler =
xsltTransformer.new ErrorListenerImpl();
transformer.setErrorListener(errorHandler);
//Transform an XML document with an XSLT style sheet
transformer.transform(source, result);
//0utput transformation errors

if (errorHandler.e != null) {

System.out.println("Transformation Exception:

+ errorHandler.e.getMessage());

}

} catch (TransformerConfigurationException e) {
System.out.println(e.getMessage());

} catch (TransformerException e) {



126

CHAPTER 5 TRANSFORMING WITH XSLT

System.out.println(e.getMessage());
} catch (SAXException e) {
System.out.println(e.getMessage());

} catch (ParserConfigurationException e) {

System.out.println(e.getMessage());
} catch (IOException e) {
System.out.println(e.getMessage());

}

//ErrorListener class
private class ErrorListenerImpl implements ErrorListener {
public TransformerException e = null;

public void error(TransformerException exception) {
this.e = exception;

}

public void fatalError(TransformerException exception) {
this.e = exception;

}

public void warning(TransformerException exception) {
this.e = exception;
}
}

In the following sections, we’ll show how to apply some various XSLT transformations to the
example XML document. You can apply transformations other than those discussed in these sections
with the transformation application XSLTTransformer. java. Just modify the input XML document
and the style sheet in the XSLTTransformer application, and run the application in Eclipse.

Transforming Identically

Identity transformation copies an input XML document to an output document without changing
any of the elements or attributes. You could apply the identity transformation to modify the encoding or
DOCTYPE or to add appropriate indentation. Listing 5-19 shows an example XSLT for identity transfor-
mation. The style sheet identityTransform.xslt applies a template pattern recursively to nodes in
catalog.xml. The XPath expression @*|node() selects all the element and attribute nodes. In the
XPath pattern, @* represents all the attribute nodes, and node() represents all the other nodes. The
output from the identity transformation is the input XML document with optional modification to
the document encoding, DOCTYPE, or indentation.

Listing 5-19. identityTransform.xslt

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" indent="yes"/>
<xsl:template match="@* | node()">
<xsl:copy>



CHAPTER 5 TRANSFORMING WITH XSLT

<xsl:apply-templates select="@* | node()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>

Removing Duplicates

An XML document could have duplicate elements that are required to be removed in the output. The
example XML document has a duplicate title element. To remove any duplicate title elements, run
the transformation application with style sheet shown in Listing 5-20, which outputs nonduplicate
article titles. The XPath expression //title[not(.=following::title)] selects nonduplicate title
elements. The XPath function text() in the XSLT pattern outputs the title element text.

Listing 5-20. removeDuplicates.xslt

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" omit-xml-declaration="yes"/>
<xsl:template match="/">
<xsl:variable name="unique-list"
select="//title[not(.=following::title)]/text()" />
<xsl:for-each select="$unique-list">
<xsl:copy>
<xsl:apply-templates/>
</xsl:copy>
<xsl:text disable-output-escaping="yes">
&#13;
</xsl:text>
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

When the output method is xml or html, certain characters are automatically escaped in the output.
To disable the automatic escaping of a character, you can use the disable-output-escaping="yes"
attribute in xs1:text; the body of the element contains the escaped sequence. For example, in
Listing 5-20, the following instruction disables output escaping for a carriage return:

<xsl:text disable-output-escaping="yes">&#13; </xsl:text>

Before we can apply this style sheet, we need to add duplicate title elements to catalog.xml,
shown in Listing 5-11. We can do so by simply copying and pasting the last article element, just
below itself. This will add a duplicate title element, by virtue of the fact that there is a duplicate
article element.

To run the transformation application with the removeDuplicates.xslt style sheet, specify the
style sheet as input to the File object stylesheet in XSLTTransformer. java in the Chapters project.
The output is the nonduplicate article titles, as shown in Listing 5-21.

Listing 5-21. Output in Eclipse from Removing Duplicates

Service Oriented Architecture Frameworks
Advanced DAO Programming
Best Practices in EJB Exception Handling

Note In subsequent sections, we’ll use the XML document whose duplicate element has been removed as input,
so remove the duplicate title elementin catalog.xml in the Eclipse project Chapter5.Sorting Elements

127



128

CHAPTER 5 TRANSFORMING WITH XSLT

Sorting Elements

You can use the XSLT element xs1:sort to sort a group of elements. The attribute order of the
xsl:sort element specifies the sorting order: ascending or descending. The data-type attribute
(whose value can be number or text) specifies the data type of the element to be sorted. The default
datatype value is text. The xsl:sort element is required to be in an xs1:for-each element or
xsl:apply-templates element.

For instance, try sorting the title elements in the example XML document in ascending order.
The style sheet sort.xslt, shown in Listing 5-22, sorts the title elements in ascending order and
outputs the text nodes in the title elements. To run the transformation application with sort.xs1t,
set sort.xslt as the style sheet in the File object stylesheet in XSLTTransformer. java.

Listing 5-22. sort.xsl1t

<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes"/>
<xsl:template match="/catalog/journal">
<xsl:apply-templates>
<xsl:sort select="title"
order="ascending"/>
</xsl:apply-templates>
</xsl:template>

<xsl:template match="article">
Title: <xsl:apply-templates select="title"/>
</xsl:template>

</xsl:stylesheet>

In Listing 5-22, the <xs1:template match="/catalog/journal"> template is matched by
the following built-in implicit XSLT instruction:

<xsl:template match="*|/">
<xsl:apply-templates/>
</xsl:template>

The built-in rule matches the <xs1:template match="/catalog/journal"> template for each
journal node in the input source document, shown in Listing 5-11. Since the
<xsl:apply-templates> instruction within the <xsl:template match="/catalog/journal"> template
has no select attribute, this means each child of the journal node is selected and a matching
template is searched. For each article child of the journal node, the matching template that works
is of course <xsl:template match="article">, which outputs titles that get sorted by the xsl:sort
instruction in the result tree. The output is a sorted list of article titles in ascending order, as shown
in Listing 5-23.

Listing 5-23. Output in Eclipse from Sorting

Title:  Advanced DAO Programming
Title: Best Practices in EJB Exception Handling
Title: Service Oriented Architecture Frameworks

Converting to HTML

Data in an XML document may have to be presented as an HTML document. You can define a trans-
formation with HTML output by setting the method attribute to html within the xs1:output element.
Listing 5-24 shows the XSLT style sheet for applying an HTML transformation.



CHAPTER 5 TRANSFORMING WITH XSLT

The style sheet htmlTransform.xslt has HTML tags to generate an HTML file. In this style sheet,
a template matches the pattern /catalog/journal, and the xs1:for-each element is used to iterate
over the article elements in a journal element. Text values are output with the xs1:value-of
element. To run the transformation application XSLTTransformer. java with this style sheet, set
input to the File object stylesheet to htmlTransform.xslt, and set the output file to catalog.html.

Listing 5-24. htmITransform.xs1t

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output  method="html"/>
<xsl:template match="/catalog/journal">
<html>
<head>
<title>Catalog</title>
</head>
<body>
<table border="1" cellspacing="0">
<tr>
<th>Level</th>
<th>Date</th>
<th>Section</th>
<th>Title</th>
<th>Author</th>
</tr>
<xsl:for-each select="article">
<tr>
<td><xsl:value-of select="@
level"/></td>
<td><xsl:value-of select="
@date"/></td>
<td><xsl:value-of select="@
section"/></td>
<td><xsl:value-of select="title"
/></td>
<td><xsl:value-of select="author"
/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

The output from the XSLT is an HTML document that can be displayed in a browser, as shown
in Figure 5-4.

129



130 CHAPTER 5 TRANSFORMING WITH XSLT

4} Catalog - Microsoft Internet Explorer 2 ||:||ﬂ

File  Edit View Favorites Tools  Help |

B - | at | Qhsearch [GelFavorites  GMedia &4 | S o -

Address I@ C\APress\ ML JavalChapterSicatalog. html j 6o | Links **
=
Level Date Section Title Author
- |Jatmary- Jawa Service Oriented Architecture Naveen
Intermediate 2004 Technology  |Frameworks Ealar
October- Java . .
A dvanced 5003 Technology Advanced DAC Programiming Zean Sullivan
Jawra Eest Practices n ETB Exception Erileanth
Advanced  [May-2002 Technology  |Handling Zhenoy
E
|@ Done ’_ ’_ ’_ |@‘ My Computer v

Figure 5-4. Output in Eclipse from HTML transformation

Merging Documents

When you merge XML documents, you create a new XML document from two XML documents. You
obtain a copy of an XML document in another XML document with the document () function. As an
example, combine the example XML document, catalog.xml, with the XML document, catalog2.xml,
listed in Listing 5-25.

Listing 5-25. catalog2. xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog xmlns="http://www.w3.0rg/2001/XMLSchema-Instance">
<journal title="Java Technology"
publisher="IBM developerWorks">
<article level="Intermediate" date="February-2003">
<title>Design XML Schemas Using UML</title>
<author>Ayesha Malik</author>
</article>
</journal>
</catalog>

The style sheet merge.xs1t creates a copy of catalog.xml and combines the copy with a copy of
catalog2.xml. To run the transformation application XSLTTrans former. java with merge.xs1t, set the
input XML document to catalog.xml and the input style sheet to merge.xs1t, shown in Listing 5-26.



CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-26. merge.xs1t

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" />

<xsl:template match="/">

<catalogs>

<xsl:copy-of select="*"/>

<xsl:copy-of select="document('catalog2.xml"')"/>
</catalogs>

</xsl:template>

</xsl:stylesheet>

The style sheet combines the example XML document catalog.xml and another XML document,
catalog2.xml, as shown in Listing 5-25, to produce the output shown in Listing 5-27.

Listing 5-27. Output in Eclipse from Merging XML Documents

<?xml version="1.0" encoding="UTF-8"?><catalogs>
<catalog xmlns="http://www.w3.0rg/2001/XMLSchema-Instance">
<journal publisher="IBM developerWorks" title="Java Technology">
<article date="January-2004" level="Intermediate" section="Java Technology">
<title>Service Oriented Architecture Frameworks</title>
<author>Naveen Balani</author>
</article>

<article date="October-2003" level="Advanced" section="Java Technology">
<title>Advanced DAO Programming</title>
<author>Sean Sullivan</author>

</article>

<article date="May-2002" level="Advanced" section="Java Technology">
<title>Best Practices in EJB Exception Handling</title>
<author>Srikanth Shenoy</author>
</article>
</journal>
</catalog><catalog xmlns="http://www.w3.0rg/2001/XMLSchema-Instance">
<journal title="Java Technology" publisher="IBM developerWorks">
<article level="Intermediate" date="February-2003">
<title>Design XML Schemas Using UML</title>
<author>Ayesha Malik</author>
</article>
</journal>
</catalog></catalogs>

Obtaining Node Values with XPath

XSLT node selection is based on XPath. With the xs1:value-of element, you can select the element
and attribute nodes in an XML document with XPath. As an example, select the value of the date
attribute for the article element with the title Advanced DAO Programming, and select the value of the
title element for the article by author Srikanth Shenoy. The style sheet xpath.xs1t, shown in
Listing 5-28, outputs the value of the date attribute and the title element. The XPath expression
article[title="Advanced DAO Programming']/@date selects the date attribute, and the XPath expres-
sion article[author="Srikanth Shenoy']/title selects the title element

131



132

CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-28. xpath.xs1t

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:
xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" omit-xml-declaration="yes"/>
<xsl:template match="/catalog/journal">
Date: <xsl:value-of select="article[title='
Advanced DAO Programming']/@date"/>
Title: <xsl:value-of select="article[author="Srikanth Shenoy']/title"/>
</xsl:template>
</xsl:stylesheet>

To run the transformation application with xpath.xslt, set the input style sheet in
XSLTTransformer. java to xpath.xslt. Listing 5-29 shows the output from the XSLT transformation.

Listing 5-29. Output in Eclipse with XPath Node Selection

Date: October-2003
Title: Best Practices in EJB Exception Handling

Filtering Elements

Applying xs1:apply-templates elements to only those elements and attributes that are required in
the output can filter elements in an XML document. As an example, select the article elements with
the level attribute specified as Intermediate. The style sheet filter.xslt, shown in Listing 5-30,
selects the article elements that have level attributes with a value of Intermediate. The XPath
expression article[@level="Intermediate'] selects the article elements with the level attributes
set to Intermediate.

Listing 5-30. filter.xsIt

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" omit-xml-
declaration="yes"/>
<xsl:template match="/catalog/journal">
<xsl:apply-templates select="article[@level="'Intermediate']"/>
</xsl:template>
<xsl:template match="article">
Title: <xsl:value-of select="title"/>
Author: <xsl:value-of select="author"/>
</xsl:template>
</xsl:stylesheet>

To run the transformation application with filter.xslt, set the File object stylesheet input
to filter.xslt in XSLTTransformer.java. The output contains only the article element with the
level value of Intermediate, as shown in Listing 5-31.



CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-31. Output in Eclipse from Filtering Elements

Title: Service Oriented Architecture Frameworks
Author: Naveen Balani

Copying Nodes

The XSLT specification provides two elements for copying nodes, xs1-copy-of and xs1-copy. The
xs1l:copy-of element copies a selected element and also copies attributes and subelements of the
selected node. xs1:copy, a different version of the xs1:copy-of element, doesn’t copy the subelements
and attributes of the selected node. As an example, copy the second article element in the journal
element in catalog.xml to output. The style sheet copy.xslt in Listing 5-32 copies the second article
element in the journal node in the catalog.xml document to the output document. The XPath
expression journal/article[2] selects the second article element in the journal element.

Listing 5-32. copy . xs1t

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml"/>

<xsl:template match="/catalog">

<xsl:copy-of select="journal/article[2]"/>

</xsl:template>

</xsl:stylesheet>

To run the transformation application with copy.xslt, specify copy.xslt as input to the File
object stylesheet in XSLTTransformer. java. The output from the XSLT transformation consists of
the second article element in the journal node from the input XML document, as shown in Listing
5-33.

Listing 5-33. Output in Eclipse from Copying Nodes

<?xml version="1.0" encoding="UTF-8"?>
<article xmlns="http://www.w3.0rg/2001/XMLSchema-Instance"
date="October-2003" level="Advanced"
section="Java Technology">
<title>Advanced DAO Programming</title>
<author>Sean Sullivan</author>
</article>

Creating Elements and Attributes

The XSLT specification provides the xs1:element element to create an element and the xs1:attribute
element to create an attribute in the resulting XML document. You specify the name of an element
or an attribute in the name attribute, and you specify the namespace of an element or attribute in the
namespace attribute. The style sheet createElement.xslt in Listing 5-34 creates an element journal
and adds an attribute publisher to the journal element. The attribute value is specified with an
xsl:text elementin an xsl:attribute element.

133



134

CHAPTER 5 TRANSFORMING WITH XSLT

Listing 5-34. createElement.xs1t

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" omit-xml-declaration="yes"/>
<xsl:template match="/">

<xsl:element name="journal">

<xsl:attribute name="publisher">

<xsl:text>IBM developerWorks</xsl:text>
</xsl:attribute>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

To run the transformation application with createElement.xslt, specify input to the File
object stylesheet as createElement.xslt in XSLTTransformer. java. The output from the style sheet
consists of a journal element with a publisher attribute, as shown in Listing 5-35.

Listing 5-35. Output in Eclipse with createElement.xsIt

<journal publisher="IBM developerWorks"/>

Adding Indentation

You can format the XSLT output with the xs1:output element. You can set the indentation in the
xs1l:output element with the indent attribute. To add indentation, specify the xalan-indent-amount
attribute and the xalan namespace attribute. The output gets indented if the XSLT processor supports
indentation. Listing 5-36 shows the style sheet indent.xs1t that adds indentation to the example
XML document.

Listing 5-36. indent.xs1t

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xalan="http://xml.apache.org/xslt"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:output method="xml" xalan:indent-amount="3"
indent="yes"/>

<xsl:template match="/">

<xsl:copy-of select="catalog"/>

</xsl:template>

</xsl:stylesheet>



CHAPTER 5 TRANSFORMING WITH XSLT

Summary

XSLT is a language for transforming XML documents to other XML documents or non-XML docu-
ments such as HTML or plain-text documents. To apply transformations described in an XSLT style
sheet to an XML document, you need an XSLT processor and an API to invoke the XSLT processor.

The TrAX API set available within JAXP 1.3 is ideally suited for transforming an input XML docu-
ment using an XSLT style sheet. The type of target output document types produced by an XSLT style
sheet is limited only by your imagination. In this chapter, we showed how to successfully transform
XML documents into other XML documents, HTML documents, and plain-text documents.

135






PART 2

Object Bindings







CHAPTER 6

Object Binding with JAXB

XML is a simple, flexible, platform-independent language for representing structured textual
information. The platform-independent nature of XML makes it an ideal vehicle for exchanging data
across application components. When disparate application components exchange XML-based
data, they do so because they want to process the exchanged data in some application-specific
manner, such as extracting and storing the data in a database or maybe formatting and presenting
the data as part of a user interface. This raises an interesting point: although XML is ideal for exchanging
data, processing XML content using the various APIs we have discussed in the preceding chapters
can be highly inefficient. Why is that so?

The answer is that most processing logic today resides within application components that are
object oriented, whereas processing XML content is extremely procedural in nature. Each compo-
nent that wants to process some XML content has to not only be concerned that the content is well-
formed but also that it conforms to some specific structure (or, in other words, is valid with respect
to some schema). Furthermore, once the component has verified that the XML content is well-formed
and valid, it has to use an appropriate API to access the data embedded within the XML content.

Of course, it can certainly do all that—in previous chapters, we discussed how to parse and vali-
date XML content and how to access and modify data embedded within XML content by using the
appropriate APIs, but directly using these APIs within most object-oriented applications can be
highly inefficient from the point of view of encapsulation and code reuse. To address the inefficiencies
associated with directly processing XML content within object-oriented Java applications, you need
aJava API that transparently maps XML content to Java objects and Java objects to XML content.
Java Architecture for XML Binding (JAXB) is precisely such an API.

Overview

The key to understanding JAXB is to focus on the following points:

¢ Given an XML Schema document, an infinite number of XML documents can be constructed
that would be valid with respect to the given schema.

* Given aschema and an XML document that conforms to the given schema, an element within
the given XML document must conform to a type component specified within the given
schema.

* What an object instance is to its corresponding class within Java, an element in an XML docu-
ment is to an element declaration specified within the document’s schema.

139



140

CHAPTER 6 OBJECT BINDING WITH JAXB

¢ Each type component (with some exceptions) specified within a schema can be mapped to a
Java class. This Java class may already exist as part of the Java platform, or it may need to be
defined as a new class.

¢ The process of binding schema type components to various Java class definitions is at the
core of JAXB.

The JAXB API was developed as a part of the Java Community Process.! It is important to note
that at the time of writing this book, two versions of JAXB were available:

¢ The first available version is JAXB 1.0, which was finalized in January 2003. An implementa-
tion of this specification is available in Java Web Services Developer Pack JWSDP) 1.6 and
also in J2EE 1.4.

¢ The second available version is JAXB 2.0, which was finalized in May 2006. An implementa-
tion of this specification is available in JWSDP 2.0 and also in Java Enterprise Edition 5.

The principal objectives of JAXB are unchanged from JAXB 1.0 to 2.0. However, 2.0 has a
number of significant additions. So, we will first discuss JAXB 1.0 in detail and then discuss the
significant additions made in JAXB 2.0.

JAXB 1.0

In the following sections, we will cover JAXB 1.0.

Architecture

Figure 6-1 shows the basic architecture of JAXB 1.0. JAXB binds a source XML Schema to a set of
schema-derived Java content classes. A binding compiler (xjc) within JAXB generates Java content
classes corresponding to top-level type components specified within the source schema. A runtime-
binding framework API available within JAXB marshals and unmarshals an XML document from and
toits corresponding Java objects.

Xjc Java

Source Binding Compiler
XML Schema |:{> content

XML Runtime Binding ,l: J?Va
Document :} Framework API Objects

Figure 6-1. JAXB 1.0 architecture

1. Information about this process is available at http://jcp.org/en/home/index.



CHAPTER 6 OBJECT BINDING WITH JAXB

It is important to note that the JAXB 1.0 binding compiler does not support the mapping of
every type of XML Schema component. In fact, the following XML Schema? components are not
supported in JAXB 1.0:

* Element declarations using the substitutionGroup attribute, which is resolved to a
predefined model group schema component (<xs:element @substitutionGroup>).

¢ Wildcard schema components (xs:any and xs :anyAttribute).

* Identity constraints used to specify uniqueness across multiple elements (xs:key, xs :keyref,
and xs:unique).

* Redefined XML Schema components using the redefine declaration (<xs:redefine>).
* Notation XML Schema components (<xs:notation»).

e The following schema attributes are not supported: complexType.abstract, element.abstract,
element. substitutionGroup, xsi:type, complexType.block, complexType.final, element.block,
element.final, schema.blockDefault, and schema.finalDefault.

XML Schema Binding to Java Representation

JAXB 1.0 defines a default binding of the supported schema subset to Java. However, you can over-
ride this default binding through external binding declarations, which you can specify inline in the
schema or in a separate XML binding declaration document. Either way, the binding declarations
override the default XML Schema to Java bindings.

The detailed algorithms that bind the XML Schema subset to Java are best left to the JAXB 1.0
specification. Having said that, we will quickly add that these details will be of limited value to you if
your sole interest lies in applying JAXB, not in implementing JAXB. Therefore, instead of covering all
the details associated with the schema binding to Java, we will help you develop an intuitive under-
standing of the schema binding by presenting a simple example.

Simple Binding Example

Say you have a simple schema that specifies a structure for a postal address within the United States
or Canada. It specifies the obvious elements such as name, street, city, and state. It specifies a choice
of either U.S. ZIP code or Canadian postal code. It constrains the country element content to be
either United States or Canada. Listing 6-1 shows an example of such a schema.

Listing 6-1. U.S. or Canadian Address Schema: address. xsd

<?xml version='1.0' encoding="UTF-8' ?>

<xs:schema jxb:version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema
http://www.nubean.com/schemas/schema.xsd" >
<xs:element name="UsOrCanadaAddress" >
<xs:complexType>

2. You can find detailed information about XML Schema components at http://www.w3.0rg/TR/xmlschema-1/.

14



142

CHAPTER 6 OBJECT BINDING WITH JAXB

<Xs:sequence>
<xs:element name="name" type="xs:string" ></xs:element>
<xs:element name="street" type="xs:string" ></xs:element>
<xs:element name="city" type="xs:string" ></xs:element>
<xs:element name="state" type="xs:string" ></xs:element>

<xs:choice>
<xs:element name="zip" type="xs:int" ></xs:element>
<xs:element name="postalCode" type="xs:string" ></xs:element>
</xs:choice>

<xs:element name="country" >
<xs:simpleType>
<xs:restriction base="xs:string" >
<xs:enumeration value="United States" ></xs:enumeration>
<xs:enumeration value="Canada" ></xs:enumeration>
</xs:restriction>
</xs:simpleType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Now, to keep things simple, you will accept all the default XML Schema binding rules, except for
one. You will override the default package name for generated Java classes and interfaces with a
specific package name, com.apress.jaxbl.example, as in the external binding file shown in Listing 6-2.

Listing 6-2. External Binding Declaration for a Package Name

<?xml version='1.0' encoding='utf-8' ?>
<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jxb:bindings node="/xs:schema" schemalocation="address.xsd" >
<jxb:schemaBindings>
<jxb:package name="com.apress.jaxbl.example" ></jxb:package>
</jxb:schemaBindings>
</jxb:bindings>
</jxb:bindings>

Later in this chapter, in the “Binding the Catalog Schema to Java Classes” section, we will discuss
in detail how to configure and run the xjc compiler from within Eclipse. For now, assume you know
how to do that, and run the xjc compiler so it consumes the schema in Listing 6-1 and the external
binding declarations in Listing 6-2. Running xjc binds the schema components to Java. For the schema
shown in Listing 6-1, the xjc schema binding works as follows:

e Inthe com.apress.jaxbl.example package, xjc generates two Java interfaces and one Java
class. The interfaces are UsOrCanadaAddressType and UsOrCanadaAddress, and the class is
ObjectFactory

e The UsOrCanadaAddressType interface is the Java representation for the <xs:complexType>
component defined within the <xs:element name="UsOrCanadaAddress" > component.



CHAPTER 6 OBJECT BINDING WITH JAXB

e The UsOrCanadaAddress interface is the Java representation for the <xs:element
name="UsOrCanadaAddress" > component.

* The UsOrCanadaAddress interface extends the UsOrCanadaAddressType interface.

* TheObjectFactory classis a typical object factory implementation that you can use to create
new instances of UsOrCanadaAddress or UsOrCanadaAddressType.

* Within the com.apress.jaxb1l.example. impl package, xjc generates two implementation classes:
UsOrCanadaAddressTypeImpl and UsOrCanadaAddressImpl. The implementation classes imple-
ment their corresponding interfaces.

* Within the com.apress.jaxbl.example.impl.runtime package, xjc generates a number of
classes that do all the low-level work associated with parsing, validating, element accessing,
marshaling, and unmarshaling.

* Marshaling an XML document creates an XML document from Java classes. Unmarshaling an
XML document creates a Java object tree from an XML document.

Now, let’s look at the code in the Java interface UsOrCanadaAddressType. Listing 6-3 shows this
generated code.

Listing 6-3. UsOrCanadaAddressType Interface Code

package com.apress.jaxbi.example;

public interface UsOrCanadaAddressType {
java.lang.String getPostalCode();
void setPostalCode(java.lang.String value);
java.lang.String getState();
void setState(java.lang.String value);
int getZip();
void setZip(int value);
java.lang.String getCountry();
void setCountry(java.lang.String value);
java.lang.String getCity();
void setCity(java.lang.String value);
java.lang.String getStreet();
void setStreet(java.lang.String value);
java.lang.String getName();
void setName(java.lang.String value);

When you study the code in Listing 6-3, notice that each element defined within the top-level
element shown in Listing 6-1 maps to a property with get and set accessor methods. This mapping
intuitively makes sense for most of the elements, but not for the two elements, zip and postalCode,
that are part of a choice group. For these two elements, the obvious question is, how is the choice
group reflected in the UsOrCanadaAddressType interface? The simple answer is, it is not. Under the
default mapping rules, the choice group is not reflected in the interface. However, the choice is
correctly implemented within the marshaling and unmarshaling logic. This is also true for the
enumeration values for the country element shown in Listing 6-1.

From an intuitive standpoint, you have seen that the default binding model treats the nested
elements within a top-level element as a flat list of elements, ignoring group components such as a
choice group. However, an alternative binding style called model group binding binds each group
component to its own Java interface. To understand this alternative style better, specify this in the
external binding declaration file using a globalBindings element, as shown in Listing 6-4.

143



144

CHAPTER 6 OBJECT BINDING WITH JAXB

Listing 6-4. External Binding Declaration with Model Group Binding Style

<?xml version="1.0"' encoding="utf-8' ?>
<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jxb:bindings node="/xs:schema" schemalocation="address.xsd" >
<jxb:globalBindings bindingStyle="modelGroupBinding">
</jxb:globalBindings>
<jxb:schemaBindings>
<jxb:package name="com.apress.jaxbl.example" ></jxb:package>
</jxb:schemaBindings>
</jxb:bindings>
</jxb:bindings>

Now, if you apply the binding shown in Listing 6-4 to the schema in Listing 6-1, the results are
slightly different. In particular, the interface UsOrCanadaAddressType contains the nested interface
ZipOrPostalCode; in addition, the corresponding property get and set methods for the ZIP and
postal code are now merged and use this new interface, as shown in Listing 6-5. (For simplicity, we
have omitted the property get and set methods that are unchanged from the default binding style in
Listing 6-5.)

Listing 6-5. UsOrCanadaAddressType Derived with Model Group Binding Style

package com.apress.jaxbl.example;
public interface UsOrCanadaAddressType {

com.apress.jaxbl.example.UsOrCanadaAddressType.ZipOrPostalCode
getZipOrPostalCode();
void
setZipOrPostalCode(com.apress.jaxbl.example.
UsOrCanadaAddressType.ZipOrPostalCode
value);

public interface ZipOrPostalCode {
java.lang.String getPostalCode();
void setPostalCode(java.lang.String value);
boolean isSetPostalCode();
int getzip();
void setZip(int value);
boolean isSetZip();
java.io.Serializable getContent();
boolean isSetContent();
void unsetContent();

The obvious advantage of this alternative style is that the semantics associated with various
group components become apparent through the designated Java interfaces. The obvious disadvan-
tage of this style is the proliferation of Java content interfaces, one per group component. Next, you
will see an example use case that illustrates how to use the JAXB binding compiler and runtime
framework.



CHAPTER 6 OBJECT BINDING WITH JAXB 145

Example Use Case

Imagine a website selling various trade journals. This website offers a web service where associated
publishers can send catalog information about their journals. The website provides an XML Schema
that specifies the structure of an XML document containing catalog information. This catalog schema
defines a top-level catalog element. This catalog element can have zero or more journal elements,
and each journal element can have zero or more article elements. Each of these elements defines
relevant attributes. The elements are defined by reference to their associated types, which are defined
separately. Listing 6-6 shows this catalog schema, catalog.xsd.

Listing 6-6. catalog.xsd

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="catalog" type="catalogType"/>

<xsd:complexType name="catalogType">

<xsd:sequence>

<xsd:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="section" type="xsd:string"/>

<xsd:attribute name="publisher" type="xsd:string"/>
</xsd:complexType>

<xsd:element name="journal" type="journalType"/>

<xsd:complexType name="journalType">
<xsd:sequence>
<xsd:element ref="article" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="article" type="articleType"/>

<xsd:complexType name="articleType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="author" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="level" type="xsd:string"/>
<xsd:attribute name="date" type="xsd:string"/>
</xsd:complexType>

</xsd:schema>

The web service client at the publisher must construct an XML document that conforms to the
catalog schema shown in Listing 6-6 and must send this document in a web service message. Listing 6-7
shows an example of such a document, catalog.xml.



146

CHAPTER 6 OBJECT BINDING WITH JAXB

Listing 6-7. catalog. xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog
section="Java Technology"
publisher="IBM developerWorks">
<journal>
<article level="Intermediate" date="January-2004" >
<title>Service Oriented Architecture Frameworks </title>
<author>Naveen Balani</author>
</article>
<article level="Advanced" date="October-2003" >
<title>Advance DAO Programming</title>
<author>Sean Sullivan</author>
</article>
<article level="Advanced" date="May-2002" >
<title>Best Practices in EJB Exception Handling </title>
<author>Srikanth Shenoy </author>
</article>
</journal>
</catalog>

The web service receiving this catalog information message needs to retrieve relevant element
and attribute values from the message and store those values in a database. In this chapter, you are
not concerned with the aspects of this use case that deal with storing data in a database or that deal
with the mechanics of assembling and transporting a web service message. We will cover those
aspects in later chapters. Your sole concern in this chapter is marshaling and unmarshaling the
document shown in Listing 6-7 and subsequently retrieving the relevant element and attribute
values from the mapped Java objects.

In this use case example, your objectives are as follows:

¢ Bind the catalog schema shown in Listing 6-6 using the xjc compiler, and generate Java content
classes representing the various schema components defined within the catalog schema.

e Marshal and unmarshal the XML document shown in Listing 6-7.

¢ Retrieve the relevant element and attribute values from the mapped Java objects.

¢ Customize schema bindings using inline binding declarations.

Before presenting some Java code associated with this use case, we’ll discuss how to download

and install the required software and how to create and configure the Eclipse project required for
this chapter.



CHAPTER 6 OBJECT BINDING WITH JAXB

Downloading and Installing the Software

To run the JAXB 1.0 examples, you will need to install the following software.

Installing Java Web Service Developer Pack (JWSDP)

JAXB 1.0 is included in JWSDP 1.6. Therefore, you need to download and install JWSDP 1.6.3 Install
JWSDP 1.6 in any directory. For this chapter, we will assume JWSDP is installed under the default
installation directory, which on Windows is C:\Sun\jwsdp-1.6; assuming that is the case, JAXB is
included in the C:\Sun\jwsdp-1.6\jaxb directory.

Installing J2SE

We recommend using J2SE 5.0 with JWSDP 1.6 because JAXB uses some SAXParserFactory class
methods that are defined in J2SE 5.0 but are not defined in J2SE 1.4.2. With JRE 1.4.2, unmarshaling
generates the following error:

java.lang.NoSuchMethodError: javax.xml.parsers.SAXParserFactory.
getSchema()Ljavax/xml/validation/Schema

You can use J2SE 1.4.2 with JWSDP 1.6 if you use the Endorsed Standards Override Mechanism
(http://java.sun.com/j2se/1.4.2/docs/guide/standards/).4 If you want to use J2SE 5.0, which we
strongly recommend, you need to download and install it. The xjc compiler does not run if the
JAVA_HOME environment variable has empty spaces in its path name. Therefore, install J2SE 5.0 in a
directory with no empty spaces in its path name.

Creating and Configuring the Eclipse Project

To compile the example schema with xjc and to run the marshaling and unmarshaling code examples
included in this project, you need to create an Eclipse Java project. The quickest way to create the
Eclipse project is to download the Chapter6 project from the Apress website (http://www.apress.com)
and import this project into Eclipse. This creates all the Java packages and files needed for this chapter
automatically.

You also need to set the Chapter6 JRE to the J2SE 5.0 JRE. You set the JRE in the project Java build
path by clicking the Add Library button. Figure 6-2 shows the Chapter6 build path. If your JWSDP 1.6
install location is not C: \Sun\jwsdp-1.6, you may need to explicitly add or edit the external JARs.
Either way, make sure your Java build path shows all the JWSDP 1.6 JAR files shown in Figure 6-2.

We will show how to configure the binding compiler xjc to generate Java content classes in the
gen_source folder and the gen_source customized bindings folder; therefore, add these two folders
to the source path under the Source tab in the Java build path area, as shown in Figure 6-3.

3. You can find JWSDP 1.6 at http://java.sun.com/webservices/downloads/webservicespack.html.
4. You can find this information at http://java.sun.com/webservices/docs/1.6/ReleaseNotes.html#new.

147



148

CHAPTER 6

& Properties for Chapterb

I bype filker bext VI

Jawva Build Path

OBJECT BINDING WITH JAXB

S=TE

G D -

Java Compiler
Javadoc Location
Project References

2 Source I = Projects B Libraries | % Order and Export I
JARs and class Folders on the build path:

1

o commons-httpclient-3.0,1,jar - C:yCommonsHEE Add JARs. .. |

2, JRE System Library [JRES.0]

jaxb-api.jar - C:hSunijwsdp-1.61jaxbilib
jaxb-impl.jar - CSuntjwsdp-1.61jaxbilib

Add External JaRs... |
jaxb-libs.jar - C:hSunijwsdp-1.61jaxbilib e
jaxb-xjc.jar - C:hSunijwsdp-1.61jaxbilib $I
jax-gname.jar - C:4Sunijwsdp-1.64jwsdp-share Add Library. .. |
namespace,jar - C:hSunijwsdp-1.61jwsdp-share
relaxngDatatype.jar - C:3Sunijwsdp-1.64jwsdp. Add Class Folder... |
xsdlibjar - CiSuntjwsdp-1.64jwsdp-sharedilib
Edit. .. |
Remayve |

Default output Folder:

| Chapters build

Browse. .. |

OF I Cancel |
Figure 6-2. Chapter6 Eclipse project Java build path
& Properties for Chapterb = |D|ﬂ
[bvpefiter text =] Java Build Path P oroe

Java Compiler
Javadoc Location
Project References

[ Source |B Projects I =i Libraries I % Order and Export I

Source folders on build path:

™ allow cutput Folders For source Folders

[ Chapters/gen_source_clistomized_bindings

E }:.15:' Excluded: gen_source/

E Add Folder... |

Edit. .. |
Remave |

Chapterd/src
2 Included: (al)

Default output Folder:

| Chapters build

Browse. .. |

]

Cancel |

Figure 6-3. Source path for the Chapter6 project



CHAPTER 6 OBJECT BINDING WITH JAXB 149

Figure 6-4 shows the Chapter6 project directory structure.

6%~

E|{37‘J Chapterd
B2 st
E|!§E com.apress.jaxb
@ JaxBMarshaller java
@ JaxBURMarshaller java
[=-[# gen_source_customized_bindings
catalog_inline. xsd
= gen_source
catalog,xsd
jaxb-api.jar - C:hSunijwsdp-1.61jaxbilib
jaxb-impl.jar - CSuntjwsdp-1.61jaxbilib
jaxb-libs.jar - C:hSunijwsdp-1.61jaxbilib
jaxb-xjc.jar - C:hSunijwsdp-1.61jaxbilib
namespace.jar - C:hSunijwsdp-1.61jwsdp-sharedilib
jax-gname.jar - C:\Sunijwsdp-1.64jwsdp-sharedilib
relaxngDatatype. jar - C:4Sunijwsdp-1.64jwsdp-sharedilib
xsdlibjar - CiSuntjwsdp-1.64jwsdp-sharedilib
JRE System Library [JRES.0]
g commons-httpelient-3.0,1.jar - C:iCommonsHtkpClientlcomm
----- |=| catalog.xml

| | |

Figure 6-4. Chapter6 Eclipse project directory structure

- - B - - - - -
DL By B g g o e B B

Binding the Catalog Schema to Java Classes

In this section, you will bind the catalog schema shown in Listing 6-6 to its Java content classes.
You'll subsequently use the Java content classes to marshal and unmarshal the XML document
shown in Listing 6-7. You compile the XML Schema with the JAXB binding compiler xjc, which can
be run with the runtime options listed in Table 6-1.

Table 6-1. xjc Command Options

Option Description

-nv The strict validation of the input schema(s) is not performed.

-b <file> Specifies the external binding file.

-d <dir> Specifies the directory for generated files.

-p <pkg> Specifies the target package.

-classpath <arg» Specifies the classpath.

-use-runtime <pkg> The impl.runtime package does not get generated. Instead, the runtime

in the specified package is used.

-xmlschema The input schema is a W3C XML Schema (the default).




150

CHAPTER 6

You will run xjc from within Eclipse. Therefore, configure xjc as an external tool in Eclipse. To
configure xjc as an external tool, select Run » External Tools. In the External Tools dialog box, you

OBJECT BINDING WITH JAXB

need to create a new program configuration, which you do by right-clicking the Program node and
selecting New. This adds a new configuration, as shown in Figure 6-5. In the new configuration,

specify a name for the configuration in the Name field, and specify the path to the xjc batch or shell

file, which resides in the jaxb/bin folder under the JWSDP install directory, in the Location field.

& External Tools

Create, manage, and run configurations

Run a program

Configurations:

Mame: | pals

Delete

] main | 7 Refresh I P& Environment I = Comman I

r—Location:
| CiSuntjwsdp-1.61jaxbibintxjc. bat
Browse Workspace, .. | Browse File System... | Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurents:
-classpath "$4{project_lockbuild" "${resource_lock" ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Apply | Feyerk |

Run Close |

Figure 6-5. Creating an external tool configuration for xjc

You also need to set the working directory and program arguments. To set the working directory,
click the Variables button for the Working Directory field, and select the container_loc variable. This
specifies a value of ${container_loc} in the Working Directory field. This value implies that what-
ever schema file is selected at the time xjc is run, that file’s parent directory becomes the working
directory for xjc.



CHAPTER 6 OBJECT BINDING WITH JAXB 151

In the Arguments field, you need to set the classpath and the schema that needs to be compiled
with the xjc compiler. You can do that by clicking the Variables button for the Arguments field and
selecting the variables project loc and resource_loc. This specifies the values ${project loc}
and ${resource_loc} in the Arguments field. Add the -classpath option before ${project loc}.The
value ${resource_loc} means that whatever file is selected at the time xjc is run, that file becomes
the schema file argument to xjc. If the directory in which Eclipse is installed has empty spaces in its
path name, enclose ${project_loc} and ${resource_loc} within double quotes, as shown in Figure 6-5.
To store the new configuration, click the Apply button.

You also need to set the environment variables JAVA_HOME and JAXB_HOME in the external tool
configuration for xjc. On the Environment tab, add the environment variables JAVA_HOME and
JAXB_HOME, as shown in Figure 6-6. Your values for these variables may of course be different.

& External Tools

Create, manage, and run configurations

Run a program

Configurations: Mame: |><JC
-4 Ant Build
=B Program : =
*m C3on| 5 rof 78 Emormen | = canmon|

Environment variables ko sek:

‘Variable | ‘alue | =
& 1nva_HOME 12565, jdk1.5.0_06
® JAXE_HOME Cisuntjwsdp-1.61jaxb

Select...

Edit:..

i

Remaye

i+ Append environment ko native environment

" Replace native environment with specified environment

Mew Delete Apply | Revert |

Figure 6-6. Adding environment variables

To add the XJC configuration to the External Tools menu, select the Common tab, and select the
External Tools check box in the Display in Favorites menu area, as shown in Figure 6-7.



152 CHAPTER 6 OBJECT BINDING WITH JAXB

& External Tools g x|
Create, manage, and run configurations
Run a prograrm
Configurations: Name: IXJC
4 Ant Build
= Program =
%% wIC EI [Main I qgh Refresh I E Environment  —— Comman
—Save as
& Local file
" Shared file: | Browse. .. |
—Display in favorites menu——————— [~ Console Encading
@Externa\ Taals %  Default (Cp1252)
 other [150-5855-1 =l
—Standard Input and Output
¥ allocate Console (necessary For input)
[ File: |
Browse \Warkspace,,, | | Browse File System, Yariables, .,
I~ append
¥ Launch in background
Mew Delete | Apply | R |
Run Close: |

Figure 6-7. Adding the xjc configuration to the external Tools menu

To run the xjc compiler on the example schema, catalog.xsd, select the catalog.xsd file in the
Package Explorer, and then select Run » External Tools » XJC. The Java interfaces and classes get
generated in the gen_source folder, as shown in Figure 6-8.

The Java classes and interfaces are generated in the package generated, by default. The
jaxb.properties file specifies an instantiation class for the javax.xml.bind.context.factory class,
and the bgm. ser file contains implementation-specific serialized objects. It is important to include
both these files in any JAR file containing generated classes.

For each top-level xsd:element and xsd:complexType schema component defined in the
example schema shown in Listing 6-6, a Java interface is generated. For example, for the top-level
<xsd:element name="catalog" type="catalogType"/> schema component, a Catalog interface gets
generated (as shown in Listing 6-8), and for the <xsd: complexType name="catalogType"> component,
a CatalogType interface gets generated (as shown in Listing 6-9).

Listing 6-8. Catalog. java

package generated;
public interface Catalog

extends javax.xml.bind.Element, generated.CatalogType {
}

Listing 6-9. CatalogType. java

package generated;

public interface CatalogType {
java.lang.String getSection();
void setSection(java.lang.String value);



CHAPTER 6 OBJECT BINDING WITH JAXB

java.util.List getJournal();
java.lang.String getPublisher();
void setPublisher(java.lang.String value);

Hierarchy =0

= L are
E|_"£} com. apress. jaxb
; JaxBMarshaller.java
[l-1J] J4¥BUnMarshaller java
= gen_source_customized_bindings
L[] catalog_inline. xsd
=] 4% gen_source
El:} generated
- [ Article.java
- (1] ArticleType. java
- [J] Catalog.java
- [J] CatalogType.java
[
[
[

H-[J] Journal.java

]m JournalType.java
]m ObjectFactory . java
..... | bam.ser

----- jaxb.properties
- generated.impl
generated.impl.runtime

catalog,xsd

el
[+

-4 jaxb-api.jar - CSunijwsdp-1.61jaxbilib
-4 jaxb-impl.jar - CSunijwsdp-1.61jaxbilib
-4 jaxb-libs.jar - CiiSunijwsdp-1.61jaxbilib
-4 jaxb-xic.jar - CSunijwsdp-1.61jaxbilib
-4 namespace.jar - CSunijwsdp-1.6\jwsdp-sharedilib
-4 jax-gname.jar - Ch5unijwsdp-1.61jwsdp-sharediib
-4 relaxngDatatype.jar - C:iSunijwsdp-1.61jwsdp-sharedilib
g xsdlib.jar - CHSunijwsdp-1.61jwsdp-sharedilib
[+-E) JRE System Library [IRES.0]
[+ commons-httpclient-3.0.1.ar - C:\CommonsHEtpClientcomm
----- |=| catalog.xml
| | ]

Figure 6-8. Schema-derived Java content classes generated by xjc

The CatalogType interface consists of getter and setter methods for each of the attributes of
the <xsd:complexType name="catalogType"> component and also a getter method for the journal
elements in this component. A setter method is not created for the journal element, because the
maxOccurs cardinality of the journal element is set to unbounded. We will explain in the next section
the procedure for adding journal elements to the catalog element.

CatalogImpl.java andCatalogTypeImpl.java are the implementation Java classes generated for
the Catalog.java and CatalogType. java interfaces, respectively. Similarly, the interface Journal. java
and implementation class JournalImpl. java are generated for the journal schema element, and so
on. The jaxb.properties file specifies an instantiation class for the javax.xml.bind.context.factory
class, and the bgm. ser file contains implementation-specific serialized objects. It is important to include
both these files in any JAR file containing generated classes.

Marshaling an XML Document

Marshaling a document means creating an XML document from a Java object tree. In the use case
example, the web services client has to marshal the XML document shown in Listing 6-7. In this
section, we will show how to marshal such a document from a Java object tree that contains objects
that are instances of generated Java content classes.

153



154 CHAPTER 6 OBJECT BINDING WITH JAXB

To marshal the example document, you need to follow these steps:

1. Create a JAXBContext object, and use this object to create a Marshaller object.

2. Create an ObjectFactory object to create instances of the relevant generated Java content
classes.

3. Using the ObjectFactory object, create an object tree with Catalog as the root object.
Populate these tree objects with the relevant data using the appropriate setter methods.

An application creates a new instance of the JAXBContext class with the static method
newInstance(String contextPath), where contextPath specifies a list of Java packages for the
schema-derived classes. In this case, generated contains the schema-derived classes, and you
create this object as follows:

JAXBContext jaxbContext=JAXBContext.newInstance("generated");

The Marshaller class converts a Java object tree to an XML document. You create a Marshaller
object with the createMarshaller() method of the JAXBContext class, as shown here:

Marshaller marshaller=jaxbContext.createMarshaller();

The Marshaler class has overloaded marshal() methods to marshal into SAX 2 events, a DOM
structure, an OutputStream, a javax.xml.transform.Result, or a java.io.Writer object.

To create a Java object tree for marshaling into an XML document, create an ObjectFactory, as
shown here:

ObjectFactory factory=new ObjectFactory();

For each schema-derived Java class, a static factory method to create an object of that class is
defined in the ObjectFactory class. The Java interface corresponding to the root element catalog is
Catalog; therefore, create a Catalog object with the createCatalog() method of the ObjectFactory class:

Catalog catalog=factory.createCatalog();

Theroot element in the XML document to be marshaled has the attributes section and publisher.
The Catalog interface provides the setter methods setSection() and setPublisher() for these
attributes. You can set the section and publisher attributes with these setter methods, as shown in
Listing 6-10.

Listing 6-10. Setting the section and publisher Attributes

catalog.setSection("Java Technology");
catalog.setPublisher("IBM developerhorks");

The Java interface for the journal element is Journal. catalog.xml has more than one journal
element, which can be created from the ObjectFactory class with the createJournal() method,
which returns a Journal object, as shown here:

Journal journal=factory.createJournal();
To add a journal element to a catalog element, obtain a java.util.List of Journal objects for

a Catalog object, and add the journal element to this List, as shown in Listing 6-11.

Listing 6-11. Adding a journal Element to the catalog Element

java.util.List journallist=catalog.getJournal();
journallist.add(journal);



CHAPTER 6 OBJECT BINDING WITH JAXB

The Java interface for an article element is Article. You create an Article object with the
createArticle() method of the ObjectFactory class:

Article article=factory.createArticle();

The element article has the attributes level and date for which the corresponding setter
methods in the Article interface are setlLevel() and setDate(). You can set the attributes level
and date for an article element with these setter methods, as shown in Listing 6-12.

Listing 6-12. Setting the Attributes Ievel and date

article.setlLevel("Intermediate");
article.setDate("January-2004");

The element article has the subelements title and author. The Article interface has setter
methods, setTitle() and setAuthor(), for setting the title and author elements, as shown in
Listing 6-13.

Listing 6-13. Setting the title and author Elements

article.setTitle("Service Oriented Architecture Frameworks");
article.setAuthor("Naveen Balani");

To add an article element to a journal element, obtain a java.util.List of Article objects
from a Journal object and add an Article object to this List, as shown in Listing 6-14.

Listing 6-14. Adding an article Element to a journal Element

java.util.list articleList=journal.getArticle();
articlelist.add(article);

To create the XML document, marshal the Catalog object with a marshal() method of class
Marshaller. The Catalog object created in this section is marshaled to an XML file with an
OutputStream, as shown here:

marshaler.marshal(catalog, System.out);

JAXBMarshaller.java in Listing 6-15 contains the complete program that marshals the example
XML document from a Java object tree, following the steps outlined earlier. In the JAXBMarshaller.
java application, the generateXMLDocument () method is where the marshaled document is generated.
You can run the JAXBMarshaller. java application in Eclipse to marshal the example XML document.

Listing 6-15. JAXBMarshaller. java

package com.apress.jaxb;

import generated.*;
import javax.xml.bind.*;

public class JAXBMarshaller {
public void generateXMLDocument() {
try {

JAXBContext jaxbContext = JAXBContext.newInstance("generated");
Marshaller marshaller = jaxbContext.createMarshaller();
generated.ObjectFactory factory = new generated.ObjectFactory();

155



156 CHAPTER 6 OBJECT BINDING WITH JAXB

Catalog catalog = factory.createCatalog();
catalog.setSection("Java Technology");
catalog.setPublisher("IBM developerhWorks");

Journal journal = factory.createJournal();
Article article = factory.createArticle();

article.setlevel("Intermediate");
article.setDate("January-2004");

article.setTitle("Service Oriented Architecture  Frameworks");
article.setAuthor("Naveen Balani");

java.util.List journallist = catalog.getJournal();
journallList.add(journal);
java.util.List articlelist = journal.getArticle();
articlelist.add(article);

article = factory.createArticle();

article.setlevel("Advanced");
article.setDate("October-2003");
article.setTitle("Advance DAO Programming");
article.setAuthor("Sean Sullivan");

articlelist = journal.getArticle();
articlelist.add(article);

article = factory.createArticle();

article.setlLevel("Advanced");

article.setDate("May-2002");

article.setTitle("Best Practices in EJB  Exception Handling");
article.setAuthor("Srikanth Shenoy");

articlelist = journal.getArticle();

articlelist.add(article);
marshaller.setProperty("jaxb.formatted.output”,Boolean.TRUE);
marshaller.marshal(catalog, System.out);

} catch (JAXBException e) {
System.out.println(e.toString());

}

public static void main(String[] argv) {
JAXBMarshaller jaxbMarshaller = new JAXBMarshaller();
jaxbMarshaller.generateXMLDocument();
}
}

Listing 6-16 shows the output from running JAXBMarshaller.java, which shows an XML docu-
ment marshaled from a Java object tree.



CHAPTER 6 OBJECT BINDING WITH JAXB

Listing 6-16. Output from JAXBMarshaller. java

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<catalog publisher="IBM developerWorks" section="Java Technology">
<journal>
<article date="January-2004" level="Intermediate">
<title>Service Oriented Architecture  Frameworks</title>
<author>Naveen Balani</author>
</article>
<article date="October-2003" level="Advanced">
<title>Advance DAO Programming</title>
<author>Sean Sullivan</author>
</article>
<article date="May-2002" level="Advanced">
<title>Best Practices in EJB  Exception Handling</title>
<author>Srikanth Shenoy</author>
</article>
</journal>
</catalog>

Unmarshaling an XML Document

Unmarshaling means creating a Java object tree from an XML document. In the example use case,
the website receives an XML document containing catalog information, and it needs to unmarshal
this document before it can process the catalog information contained within the document. In this
section, we’ll first show how to unmarshal the example XML document using the JAXB API, and
subsequently we’ll show how to access various element and attribute values in the resulting Java
object tree.

To unmarshal, you need to follow these steps:

1. The example XML document, catalog.xml (Listing 6-7), is the starting point for unmarshaling.
Therefore, import catalog.xml to the Chapter6 project in Eclipse by selecting File » Import.
2. Create a JAXBContext object, and use this object to create an UnMarshaller object.

3. The Unmarshaller class converts an XML document to a Java object.

As discussed in the previous section, create a JAXBContext object, which implements the JAXB
binding framework operations unmarshal() and validate().

You need an Unmarshaller object to unmarshal an XML document to a Java object. Therefore,

create an UnMarshaller object with the createUnmarshaller () method of the JAXBContext class, as
shown here:

Unmarshaller unMarshaller=jaxbContext.createUnmarshaller();

The Unmarshaller class has overloaded unmarshal() methods for unmarshaling. To validate
an XML document that is being unmarshaled, set the Unmarshaller object to be validating with the
setValidating(boolean) method, as shown here:

unMarshaller.setValidating(true);

To create a Java object representation of an XML document, unmarshal the XML document to
obtain a Catalog object:

Catalog catalog=(Catalog)(unMarshaller.unmarshal(xmlDocument));

157



158

CHAPTER 6 OBJECT BINDING WITH JAXB

xmlDocument is the File object for the XML document. The unmarshal() method also accepts an
InputSource, an InputStream, a Node, a Source, or a URL as input. The unmarshal() method returns a
Java object corresponding to the root element in the XML document being unmarshaled. This completes
the unmarshaling of the document. Now that you have an object tree, accessing data embedded
within the document is a simple matter of using the right property method on the right object.

The root element catalog has the attributes section and publisher, which you can access with
the getSection() and getPublisher() methods, as shown in Listing 6-17.

Listing 6-17. Outputting section and publisher Attributes

System.out.println("Section: "+catalog.getSection());
System.out.println("Publisher: "+catalog.getPublisher());

You can obtain a List of Journal objects for a Catalog object with the getJournal() method of
the Catalog interface:

java.util.List journallist=catalog.getJournal();

Iterate over the List to obtain the Journal objects, which correspond to the journal elements in
the XML document, catalog.xml, as shown in Listing 6-18.

Listing 6-18. Retrieving Journal Objects for a Catalog Object

for(int i=0; i<journallist.size(); i++){
Journal journal=(Journal)journallist.get(i);

}

You can obtaina List of Article objects with the getArticle() method of the Journal interface,
as shown here:

java.util.List articlelist=journal.getArticle();

To obtain Article objectsin an Article List, iterate over the List, and retrieve Article objects,
as shown in Listing 6-19.

Listing 6-19. RetrievingArticle Objects from a List

for(int j=0; j<articleList.size(); j++){
Article article=(Article)articlelist.get(j);
}

An article element has the attributes level and date and the subelements title and author.
You can access the values for the article element attributes and subelements with getter methods
for these attributes and elements, as shown in Listing 6-20.

Listing 6-20. Outputting article Element Attributes and Subelements

System.out.println("Article Date: "+article.getDate());
System.out.println("Level: "+article.getlevel());
System.out.println("Title: "+article.getTitle());
System.out.println("Author: "+article.getAuthor());

The complete program, JAXBUnMarshaller. java, shown in Listing 6-21, demonstrates how to
unmarshal the example XML document following the steps outlined earlier. The unmarshaling
application has a method unMarshall(File), which takes a File object as input. The input file should
be the document to be unmarshaled.



CHAPTER 6 OBJECT BINDING WITH JAXB

Listing 6-21. JAXBUnMarshaller. java

package com.apress.jaxb;

import generated.*;

import javax.xml.bind.*;
import java.io.File;

import java.io.IOException;

public class JAXBUnMarshaller {
//Method to Unmarshal an XML Document
public void unMarshall(File xmlDocument) {
try {

//Create a JAXBContext object
JAXBContext jaxbContext = JAXBContext.newInstance("generated");
//Create an Unmarshaller object
Unmarshaller unMarshaller = jaxbContext.createUnmarshaller();
//Set Unmarshaller to validating
unMarshaller.setValidating(true);
//Unmarshal an XML document to a Catalog object
Catalog catalog = (Catalog) unMarshaller.unmarshal(xmlDocument);
//0utput the element and attribute values in XML document
System.out.println("Section: " + catalog.getSection());
System.out.println("Publisher: " + catalog.getPublisher());
java.util.List journallist = catalog.getJournal();
for (int i = 0; i < journallist.size(); i++) {

Journal journal = (Journal) journallist.get(i);

java.util.List articlelist = journal.getArticle();
for (int j = 0; j < articleList.size(); j++) {
Article article = (Article) articlelList.get(j);
System.out.println("Article Date: " + article.getDate());
System.out.println("Level: " + article.getlevel());
System.out.println("Title: " + article.getTitle());
System.out.printIn("Author: " + article.getAuthor());

}
}
} catch (JAXBException e) {
System.out.println(e.toString());

}
}

public static void main(String[] argv) {
File xmlDocument = new File("catalog.xml");
JAXBUnMarshaller jaxbUnmarshaller = new JAXBUnMarshaller();
jaxbUnmarshaller.unMarshall(xmlDocument);
}
}

Listing 6-22 shows the output from unmarshaling the example XML document.

159



160

CHAPTER 6 OBJECT BINDING WITH JAXB

Listing 6-22. Output in Eclipse from Unmarshaling catalog. xml

Section: Java Technology

Publisher: IBM developerWorks

Article Date: January-2004

Level: Intermediate

Title: Service Oriented Architecture  Frameworks
Author: Naveen Balani

Article Date: October-2003

Level: Advanced

Title: Advance DAO Programming

Author: Sean Sullivan

Article Date: May-2002

Level: Advanced

Title: Best Practices in EJB  Exception Handling
Author: Srikanth Shenoy

Customizing JAXB Bindings

The JAXB binding compiler, xjc, provides a default binding of an XML Schema to Java classes. You
can customize the schema bindings either by adding inline binding declarations to the schema or by
using an external binding file. In this section, we will show how to customize JAXB bindings. You
have two choices for defining JAXB customization bindings:

¢ The first choice for defining customization bindings is an external (to schema) bindings file.
External bindings offer the advantage of applying different customizations to the same
schema definition to satisfy different binding objectives. However, external bindings use
XPath expressions to address binding nodes and are therefore relatively complex to define.

 Inline bindings are defined within schema definition elements; they address binding nodes
implicitly. Unlike external bindings, they require no use of XPath expressions, so they are
relatively easy to define.

To keep things simple, we will use inline bindings in this section. Binding declarations are of the
following types:

¢ Global binding declarations

¢ Schema binding declarations

e XML-to-Java datatype binding declarations

* C(lass binding declarations

¢ Property binding declarations

We have added an example of each of the binding declaration types to the example XML Schema

document, catalog_inline.xsd, as shown in Listing 6-23. We discuss these inline binding declara-
tions in subsequent sections.

Listing 6-23. catalog_inline.xsd with Inline Binding Declarations

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
jxb:version="1.0">

<xsd:annotation>
<xsd:appinfo>



CHAPTER 6 OBJECT BINDING WITH JAXB

<jxb:globalBindings
collectionType ="java.util.ArrayList"
fixedAttributeAsConstantProperty= "true"
generateIsSetMethod= "false"
enableJavaNamingConventions = "true">
<jxb:javaType name= "java.util.Date"
xmlType= "xsd:date"
parseMethod= "com.apress.jaxb.DateHelper.parse"
printMethod= "com.apress.jaxb.DateHelper.format">
</jxb:javaType>
</jxb:globalBindings>
<jxb:schemaBindings>
<jxb:package name="jaxb"/>
<jxb:nameXmlTransform>
<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransforms>
</jxb:schemaBindings>
</xsd:appinfo>
</xsd:annotation>
<xsd:element name="catalog" type="catalogType"/>
<xsd:complexType name="catalogType">
<xsd:annotation>
<xsd:appinfo>
<jxb:class name = "CatalogClass">
</jxb:class>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="section" type="xsd:string"/»>
<xsd:attribute name="publisher" type="xsd:string"/>
</xsd:complexType>
<xsd:element name="journal" type="journalType"/>
<xsd:complexType name="journalType">
<xsd:sequence>
<xsd:element ref="article" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="article" type="articleType"/>
<xsd:complexType name="articleType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string">
<xsd:annotation>
<xsd:appinfo>
<jxb:property generateIsSetMethod="true" />
</xsd:appinfo>
</xsd:annotation>
</xsd:element>
<xsd:element name="author" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="level" type="xsd:string"/>
<xsd:attribute name="date" type="xsd:date"/>
</xsd:complexType>
</xsd:schema>

161



162

CHAPTER 6 OBJECT BINDING WITH JAXB

The schema root element has a namespace declaration for the http://java.sun.com/xml/ns/
jaxb namespace. You can specify the JAXB namespace declaration with or without a prefix. If the
namespace declaration has a prefix, you should add the binding declarations with the prefix. You
add binding declarations with the syntax listed in Listing 6-24.

Listing 6-24. Syntax of Binding Declaration

<xs:annotation>
<xs:appinfo>
JAXB Binding Declarations
</xs:appinfo>
</xs:annotation>

Global Binding Declarations

Global binding declarations are declarations that apply to all the elements in the schema definition
in which the declarations are specified. They also apply to any included or imported schemas. You
specify global binding declarations in the root element with the globalBindings element. Listing 6-25
shows the global binding declaration in the example schema.

Listing 6-25. Global Binding Declaration

<jxb:globalBindings
collectionType ="java.util.Arraylist"
fixedAttributeAsConstantProperty= "true"
generateIsSetMethod= "false"
enableJavaNamingConventions = "true">

</jxb:globalBindings>

The collectionType attribute in the globalBindings element specifies a list type class, which
must implement the java.util.List interface. In the example, it specifies that all lists in the
generated implementations should be represented internally as java.util.ArraylList. The attribute
fixedAttributeAsConstantProperty specifies that fixed attributes should be generated as constants
in the Java classes. The attribute generateIsSetMethod specifies that the isSet() method should be
generated corresponding to the getter and setter property methods. The attribute
enableJavaNamingConventions specifies that the Java naming conventions should be enabled.

Schema Binding Declarations

You also specify schema binding declarations in the root element, with the schemaBindings element,
as shown in Listing 6-26. The scope of schema declarations is all the schema elements in the target
namespace of a schema. In the example schema, the schema binding declaration specifies that the
Java classes be generated in the package jaxb. Also, the Java classes corresponding to the schema
element declarations are generated with an Element suffix.

Listing 6-26. Schema Binding Declaration

<jxb:schemaBindings>
<jxb:package name="jaxb"/>
<jxb:nameXmlTransform>
<jxb:elementName suffix="Element"/>
</jxb:nameXmlTransform>
</jxb:schemaBindings>



CHAPTER 6 OBJECT BINDING WITH JAXB

Datatype Binding Declarations

You specify datatype binding declarations with the javaType element. In the example schema, the
xsd:date datatype maps to java.util.Date, as shown in Listing 6-27. Because the datatype binding
is specified in the globalBindings element, the datatype conversion applies to all the schema and
included schemas. The attribute parseMethod specifies the method to invoke in unmarshaling an
XML document, and the attribute printMethod specifies the method to invoke in marshaling an XML
document.

Listing 6-27. Datatype Binding Declaration

<jxb:javaType name= "java.util.Date"
xmlType= "xsd:date"
parseMethod= "com.apress.jaxb.DateHelper.parse"
printMethod= "com.apress.jaxb.DateHelper.format">
</jxb:javaType>

Class Binding Declarations

You specify class binding declarations with the class element in a schema element, as shown in
Listing 6-28. With class binding declarations, you can map a schema element to a specified interface
and implementation class. In the example schema, the complex type catalogType maps to
CatalogClass. The default mapping for the complex type catalogType is CatalogType.

Listing 6-28. Class Binding Declaration

<jxb:class name = "CatalogClass">
</jxb:class>

Property Binding Declarations

You specify a property binding declaration with the property element. A property binding declara-
tion specifies the customization in the binding of an element to a Java interface or class. In the example
schema, an isSet() method is generated for the title element. An isSet() method returns true ifa
default value has been specified in the schema.

<jxb:property generateIsSetMethod= "true" />

If you run the xjc compiler again, you will notice that the Java classes get generated in the jaxb
package. Lists are represented internally in implementation classes with java.util.Arraylist.
The datatype xsd:date maps to java.util.Date. Java representations generated corresponding to
schema elements have an Element suffix. The complex type catalogType maps to the CatalogClass
interface, and the isSet() and unset() methods are generated for the title element.

JAXB 2.0

In the following sections, we will cover JAXB 2.0 and how it differs in operation from JAXB 1.0.

Architecture

JAXB 1.0 was designed under a tight time constraint. As a result, the architects of this specification
made a conscious decision to support the binding of only a subset of schema components to Java;

163



164

CHAPTER 6 OBJECT BINDING WITH JAXB

complete support was left to a later specification. JAXB 2.0 remedies the lack of complete schema
support in JAXB 1.0 and adds binding support for missing schema components. In particular, the
following schema support was added to JAXB 2.0:

Element declarations using the substitutionGroup attribute, which is resolved to a
predefined model group schema component (<xs:element @substitutionGroup>).

Wildcard schema components (xs:any and xs:anyAttribute).

Identity constraints used to specify uniqueness across multiple elements (xs:key, xs: keyref,
and xs:unique).

Redefined XML Schema components using the redefine declaration (<xs:redefine>).
Notation XML Schema components (<xs:notation>).

The following schema attributes are supported: complexType.abstract, element.abstract,
element. substitutionGroup, xsi:type, complexType.block, complexType.final, element.block,
element.final, schema.blockDefault, and schema.finalDefault.

The binding framework of JAXB 2.0 enhances the JAXB 1.0 unidirectional binding framework
and adds support for bidirectional binding. JAXB 2.0 adds support for the binding of Java classes to
XML Schema components, as shown in Figure 6-9.

|:'I > Java
Source Bind Content

XML Scema :
Classes

conforms instanceof

XML Runtime Binding ll: Java

Document :J] Framework AP| Objects

Figure 6-9. JAXB 2.0 supports bidirectional binding.

Annotations

JAXB 2.0 relies on J2SE 5.0 annotations® to support bidirectional mapping between XML Schema
and Java types. Annotations are used both in generated Java content classes and in Java classes as
input to generate schema definitions. These binding annotations are defined in the javax.xml.
bind.annotation package. Familiarity with J2SE 5.0 is required (and is assumed) to use these anno-
tations. Table 6-2 lists some of the more commonly used annotations defined in the javax.xml.
bind.annotation package.

5. Annotations are a metadata facility for the Java programming language, defined as part of JSR-175
(http://www.jcp.org/aboutJava/communityprocess/review/jsr175/).



Table 6-2. JAXB 2.0 Binding Annotations

CHAPTER 6 OBJECT BINDING WITH JAXB

Annotation Type Description Annotation Elements
XmlAccessorType Specifies the default AccessType.PUBLIC_MEMBER maps only
serialization of fields public fields and JavaBean properties.
and properties AccessType.FIELDS maps only fields.
AccessType.PROPERTIES maps only
JavaBeans properties. AccessType.NONE
maps neither fields nor properties.
XmlAttribute Maps a JavaBean name: Attribute name. namespace: Attribute
property to an attribute namespace. required: Specifies whether
attribute is required; the default is false.
XmlElement Maps a JavaBean defaultValue: The default value of element.
property to an element name: The element name. namespace: Target
namespace of element. nillable: Specifies
whether element is nillable; the default is
false. type: Element type.
Xm1Enum Maps an enum to a value: Enumeration value
simple type with
enumeration
Xmllist Maps a property to a
list simple type
XmlRootElement Maps a class to name: Local name of root element.
root element namespace: Namespace of root element.
XmlSchema Maps a package name attributeFormDefault: Specifies the value
to a XML namespace of the attributeFormDefault attribute.
elementFormDefault: Specifies the value
of the attribute elementFormDefault.
namespace: XML namespace. xmlns: Maps
namespace prefixes to namespace URIs.
XmlType Maps a class to an XML name: Target namespace of the XML
Schema type, whichmay  Schema type. propOrder: Specifies the
be a simple type or a order of XML schema elements when a
complex type class is mapped to a complex type.
XmlValue Maps a class to an XML

Schema complex type with
simpleContent or an XML

Schema simple type

XML Schema Binding to Java Representation

Just like JAXB 1.0, JAXB 2.0 specifies a default XML Schema to Java binding that can be overridden
through external binding declarations. Conceptually, the JAXB 2.0 binding of XML Schema components
to Java is similar to JAXB 1.0. However, since JAXB 2.0 binding is based on J2SE 5.0, its Java represen-
tation uses Java 5 annotation tags and is much more compact than the JAXB 1.0 Java representation.
Let’s revisit the simple example you looked at in the context of JAXB 1.0 so you can see how the

XML Schema to Java binding works under JAXB 2.0.

165



166

CHAPTER 6 OBJECT BINDING WITH JAXB

Simple Binding Example Revisited

Listing 6-1 shows the simple example schema. As before, to keep things simple, you will accept all
the default XML Schema binding rules except for one. You will override the default package name for
the generated Java content with a specific package name, com.apress.jaxb2.example, as shown in
the external binding file in Listing 6-29. This file differs from Listing 6-2 in that it has a different
package name and different version attribute value for the top-level jxb:bindings element, which in
this case is 2.0.

Listing 6-29. External Binding Declaration for a Package Name

<?xml version='1.0' encoding='utf-8' ?>
<jxb:bindings version="2.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jxb:bindings node="/xs:schema" schemalocation="address.xsd" >
<jxb:schemaBindings>
<jxb:package name="com.apress.jaxb2.example" ></jxb:package>
</jxb:schemaBindings>
</jxb:bindings>
</jxb:bindings>
Ignoring for the moment the mechanics of configuring the JAXB 2.0 binding compiler, let’s

assume you can run the JAXB 2.0 xjc compiler. Running xjc, of course, binds schema components
to Java. For the schema shown in Listing 6-1, the JAXB 2.0 xjc schema binding works as follows:

¢ Inthe com.apress.jaxb2.example package, xjc generates two Java classes: UsOrCanadaAddress
and ObjectFactory. Because the complexType in Listing 6-1 is anonymous, no separate class
corresponding to an anonymous complexType is generated.

e The UsOrCanadaAddress class is the Java representation for the <xs:element
name="UsOrCanadaAddress" > component.

e TheObjectFactory class is an object factory implementation.

If you compare this to the binding of the schema to Java in JAXB 1.0, as explained earlier for
JAXB 1.0, you will immediately notice the compactness of the JAXB 2.0 binding, compared to the
JAXB 1.0 binding. Now, take a closer look at the code for the generated Java class UsOrCanadaAddress,
which is shown in Listing 6-30.

Listing 6-30. UsOrCanadaAddress Class Code

package com.apress.jaxb2.example;

@XmlAccessorType(AccessType.FIELD)
@XmlType(name = "", propOrder = {
"name",
"street",
"city",
"state",
‘zip”,
"postalCode"”,
"country"”
1))
@XmlRootElement(name = "UsOrCanadaAddress™)



CHAPTER 6 OBJECT BINDING WITH JAXB 167

public class UsOrCanadaAddress {

protected String name;
protected String street;
protected String city;
protected String state;
protected Integer zip;
protected String postalCode;
protected String country;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public String getStreet() {
return street;

}

public void setStreet(String value) {
this.street = value;

}

public String getCity() {
return city;

}

public void setCity(String value) {
this.city = value;

}

public String getState() {
return state;

}

public void setState(String value) {
this.state = value;

}

public Integer getZip() {
return zip;

}

public void setZip(Integer value) {
this.zip = value;

}

public String getPostalCode() {
return postalCode;

}



168 CHAPTER 6 OBJECT BINDING WITH JAXB

public void setPostalCode(String value) {
this.postalCode = value;
}

public String getCountry() {
return country;
}

public void setCountry(String value) {
this.country = value;
}

When you study the code in Listing 6-30, you'll notice that this binding is different from the one
for JAXB 1.0. In the default JAXB 2.0 Java representation, instead of an interface, you have a class that
is based on Java 5 and uses Java 5 annotation tags (see Table 6-2), such as @mlAccessorType. However,
you can override the default Java representation with a binding declaration such that a schema
element component is mapped to an interface, instead of a class; you do this using a globalBindings
element, as shown in Listing 6-31.

Listing 6-31. External Binding Declaration with Model Group Binding Style

<?xml version="1.0"' encoding="utf-8' ?>
<jxb:bindings version="1.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jxb:bindings node="/xs:schema" schemalocation="address.xsd" >
<jxb:globalBindings generateValueClass="false">
</jxb:globalBindings>
<jxb:schemaBindings>
<jxb:package name="com.apress.jaxbl.example" ></jxb:package>
</jxb:schemaBindings>
</jxb:bindings>
</jxb:bindings>

Now, if you apply the binding shown in Listing 6-31 to the schema in Listing 6-6, the results are
slightly different in that UsOrCanadaAddress is now an interface, as shown in Listing 6-32, with an
associated implementation class that is not shown here.

Listing 6-32. UsOrCanadaAddress Derived with generateValueClass Set to false

package com.apress.jaxb2.example;
public interface UsOrCanadaAddress {
String getName();
void setName(String value);
String getStreet();
void setStreet(String value);
String getCity();
void setCity(String value);
String getState();
void setState(String value);
Integer getZip();
void setZip(Integer value);



CHAPTER 6 OBJECT BINDING WITH JAXB

String getPostalCode();

void setPostalCode(String value);
String getCountry();

void setCountry(String value);

Example Use Case

For JAXB 2.0, we will use the same example as for JAXB 1.0. The example schema definition is the
same, catalog.xsd, listed in Listing 6-6. The example XML document is also the same, catalog.xml,
listed in Listing 6-7. The example XML document will be marshaled and unmarshaled with the JAXB
2.0 AP, instead of the JAXB 1.0 AP], and we’ll discuss the differences.

Before discussing the marshaling and unmarshaling Java applications developed with JAXB 2.0,
we will show how to download and install some required software and create and configure an
Eclipse project for JAXB 2.0.

Downloading and Installing Software

To run the JAXB 2.0 examples, you will need the following software.

Installing Java Web Service Developer Pack (JWSDP)

JAXB 2.0 is included in JWSDP 2.0. Therefore, you need to download and install JWSDP 2.0.5 Install
JWSDP 2.0 in any directory. We will assume JWSDP 2.0 is installed under the default installation
directory, which on Windows is C:\Sun\jwsdp-2.0; assuming that is the case, JAXB is included in the
C:\Sun\jwsdp-2.0\jaxb directory.

Install J2SE 5.0

In the JAXB 1.0 example, you used J2SE 5.0, because J2SE 1.4.2 does not provide some SAXParserFactory
class methods. With JAXB 2.0, you need to use J2SE 5.0, because JAXB 2.0 uses parameterized types.
Of course, you may have already installed J2SE 5.0 in the context of JAXB 1.0, so you may not need to
install it at this point.

Creating and Configuring Eclipse Project

To compile the example schema with xjc and to run the marshaling and unmarshaling code examples
for JAXB 2.0, you need to create an Eclipse Java project. The quickest way to create the Eclipse project
is to download the Chapter6-JAXB2.0 project from the Apress website (http://www.apress.com) and
import this project into Eclipse. This creates all the Java packages and files needed for this chapter
automatically.

You also need to set the Chapter6-JAXB2.0 JRE to the J2SE 5.0 JRE. You set the JRE in the project
Java build path by clicking the Add Library button. Figure 6-10 shows the Chapter6-JAXB2.0 Java
build path. If your JWSDP 2.0 install location is not C: \Sun\jwsdp-2.0, you may need to explicitly add
or edit the external JARs shown in Figure 6-10. Either way, make sure your Java build path shows all
the JWSDP 2.0 JAR files shown in Figure 6-10.

6. You can find JWSDP 2.0 at http://java.sun.com/webservices/downloads/webservicespack.html.

169



170 CHAPTER 6 OBJECT BINDING WITH JAXB

& Properties for Chapter6-JAXB2.0 = |D|ﬂ

[tvpefiter text =] Java Build Path Py

2 Source I = Projects B Libraries | % Order and Export I
% JARs and class Folders on the build path:
Java Code Skyle

Java Compiler 2 activation.jar - C:\5untjwsdp-2,0Yjwsdp-sharec Add JARs. .. |
Javadoc Location jaxb-api.jar - CH\3unjwsdp-2.0jaxbilib
Project References jaxb-impl.jar - C:iSuntjwsdp-2. 0l jaxbilib Add External JARs. .. |
jaxb-xjc.jar - C:h5unljwsdp-2.0hjaxbilib o ]
jsr173_api.jar - CASunijwsdp-2, 0\sisxpilio $I
sisxp.jar - CHSuntjwsdp-2.0isisxpllib et (g |
=, JRE System Library [JRES.0]
Add Class Folder. .. |
Edit... |

Remave |

4] | &
Default output Folder:

| Chapters-JaxE2.0/build Brawse.., |
oK I Cancel |

Figure 6-10. Chapter6 Eclipse project Java build path

We will show how to configure the binding compiler xjc to generate Java content classes in
the gen_source folder; therefore, we have added the gen_source folder to the source path under the
Source tab in the Java build path area, similar to the JAXB 1.0 project. Figure 6-11 shows the
Chapter6-JAXB2.0 project directory structure.

Hierarchy

[EEEY Chapters-],
=8 src

B3 com.apress.jaxb

: m Catalog.java

-[J] 1axBMarshaller java

-[J] JaxBURMarshaller java

= gen_source

catalog,xsd

JRE System Library [JRES.0]

| activation.jar - C:4Sumijwsdp-2, 0 jwsdp-sharedilib

| jaxb-api.jar - CiSunljwsdp-2.04jaxbilib

axb-impl.jar - C:45unijwsdp-2, Mjaxbilib

| jaxb-xjc.jar - CiSunljwsdp-2.04jaxbilib

| jsr173_api.jar - CSuntjwsdp-2.0isisxpilib

Hl-g) sisxpjar - CHsunijwsdp-2.0isisxpilib

----- = schemagen

catalog.xml

Figure 6-11. Chapter6 Eclipse project directory structure



CHAPTER 6 OBJECT BINDING WITH JAXB

Binding Catalog Schema to Java Classes

In this section, you will bind the catalog schema shown in Listing 6-6 to its Java content classes.
You'll subsequently use the Java content classes to marshal and unmarshal the XML document
shown in Listing 6-7. You will run xjc from within Eclipse. Therefore, configure xjc as an external
tool in Eclipse, similar to the JAXB 1.0 project configuration. The only difference for the JAXB 2.0
project is that the xjc batch file Location field is set to the JAXB 2.0 xjc batch file. You set the envi-
ronment variables JAVA_HOME and JAXB_HOME similar to JAXB 1.0. Set JAXB_HOME for Chapter6-JAXB2.0
to C:\Sun\jwsdp-2.0\jaxb. To add the xjc configuration to the External Tools menu, select the
Common tab, and select the check box External Tools in the Display in Favorites menu area, as
shown in Figure 6-7.

To run the xjc compiler on the example schema, catalog.xsd, select the catalog.xsd file in the
Package Explorer and then select Run » External Tools » XJC. Schema-derived classes get generated in
the gen_source folder, as shown in Figure 6-12.

Hierarchy =g

B8 com.apress.jaxh

: m Catalog.java

[J] 1axBMarshaller java
m JaxBURMarshaller java
= gen_source

El-H3 generated

@[] ArticeType.java

m CatalogType. java
m JournalType.java
m ObjectFactory.java
catalog,xsd

[+-E) JRE System Library [IRES.0]
-4 ackivation.jar - ChSunijwsdp-2.04jwsdp-sharedilib
-4 jaxb-api.jar - CSunijwsdp-2,04jaxbilib
-4 jaxb-impl.jar - CSunijwsdp-2.04jaxbilib
-4 jaxb-xic.jar - CSunijwsdp-2,04jaxbilib
-4 jsr173_api.jar - CSuntjwsdp-2.0lsisxpilib
-4 sisxp.jar - CSunijwsdp-2.0\sisxpllib
----- = schemagen
----- |=| catalog.xml
| |2

Figure 6-12. Schema-derived Java content classes generated by xjc

Java classes and interfaces are generated in the package generated by default. Fewer classes are
generated with JAXB 2.0 than with JAXB 1.0. For each xsd:complexType schema component, one
value class gets generated, instead of an interface and an implementation class. For example, for the
complex type catalogType, shown in Listing 6-33, the value class CatalogType.java gets generated.

Listing 6-33. The Complex Type catalogType

<xsd:complexType name="catalogType">
<xsd:sequence>
<xsd:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="section" type="xsd:string"/>
<xsd:attribute name="publisher" type="xsd:string"/>
</xsd:complexType>

17



172

CHAPTER 6 OBJECT BINDING WITH JAXB

The CatalogType.java class consists of getter and setter methods for each of the attributes of
the catalogType complex type. A getter method for the complex type journalType with the return
type List<JournalType> also gets generated. Listing 6-34 shows CatalogType. java.

Listing 6-34. CatalogType. java

package generated;

import java.util.Arraylist;

import java.util.list;

import javax.xml.bind.annotation.AccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlType;

import generated.CatalogType;

import generated.JournalType;

@XmlAccessorType(AccessType.FIELD)

@mlType(name = "catalogType", propOrder = {
"journal"

b

public class CatalogType {

protected List<JournalType> journal;
@XmlAttribute

protected String publisher;
@XmlAttribute

protected String section;

public List<JournalType> getJournal() {
if (journal == null) {
journal = new Arraylist<JournalType>();

}

return this.journal;

public String getPublisher() {
return publisher;
}

public void setPublisher(String value) {
this.publisher = value;

}

public String getSection() {
return section;

}



CHAPTER 6

public void setSection(String value) {
this.section = value;

}

OBJECT BINDING WITH JAXB

Similarly, the value class JournalType. java gets generated for the complex type journalType,
and the value class ArticleType.java gets generated for the complex type articleType. An
ObjectFactory. java factory class gets generated, which consists of the create methods for each of
the complex type and element declarations in the example schema. For example, the ObjectFactory
class method for the complex type catalogType is createCatalogType(), and its return type is
CatalogType. The ObjectFactory class method for the element catalog is
createCatalog(CatalogType), and its return type is JAXBElement<CatalogType>. Listing 6-35 shows
ObjectFactory.java

Listing 6-35. ObjectFactory. java

package generated;

import javax.xml.
import javax.xml.
import javax.xml.
import javax.xml.
import generated.
import generated.
import generated.
import generated.

@XmlRegistry

bind.JAXBElement;
bind.annotation.XmlElementDecl;
bind.annotation.XmlRegistry;
namespace.QName;

ArticleType;

CatalogType;

JournalType;

ObjectFactory;

public class ObjectFactory {

private final static QName _Article ONAME = new QName(
private final static QName Journal ONAME = new QName(
private final static QName _Catalog ONAME = new QName(

public ObjectFactory() {

}

public JournalType createJournalType() {
return new JournalType();

}

public ArticleType createArticleType() {
return new ArticleType();

}

public CatalogType createCatalogType() {
return new CatalogType();

}

@XmlElementDecl(namespace = "", name = "article")

public JAXBElement<ArticleType> createArticle(ArticleType value) {
return new JAXBElement<ArticleType>

(_Article QNAME, ArticleType.class, null, value);

, "article");
, "journal");
, "catalog");

173



174

CHAPTER 6 OBJECT BINDING WITH JAXB

@XmlElementDecl(namespace = "", name = "journal")
public JAXBElement<JournalType> createJournal(JournalType value) {
return new JAXBElement<JournalType>
(_Journal QONAME, JournalType.class, null, value);

}

@XmlElementDecl(namespace = "", name = "catalog")
public JAXBElement<CatalogType> createCatalog(CatalogType value) {
return new JAXBElement<CatalogType>
(_Catalog ONAME, CatalogType.class, null, value);

Marshaling an XML Document

Marshaling an XML document means creating an XML document from a Java object representation

of the XML document. In the use case example, the web services client has to marshal the XML docu-

ment shown in Listing 6-7. In this section, we will show how to marshal such a document from a Java

object tree that contains objects that are instances of schema-derived classes, generated with JAXB 2.0.
To marshal the example document, you need to follow these steps:

* Create a JAXBContext object, and use this object to create a Marshaller object.
* Create an ObjectFactory object to create instances of the relevant generated Java content classes.

* Using the ObjectFactory object, create an object tree with CatalogType as the root object.
Populate these tree objects with the relevant data using the appropriate setter methods.

¢ Create a JAXBElement<CatalogType> object from the CatalogType object.
JAXBElement<CatalogType> represents the catalog element in XML document.

An application creates a new instance of the JAXBContext class with the static method
newInstance(String contextPath), where contextPath specifies a list of Java packages for the
schema-derived classes. In this case, generated contains the schema-derived classes, and you create
this object as follows:

JAXBContext jaxbContext=JAXBContext.newInstance("generated");

The Marshaller class converts a Java object tree to an XML document. You create a Marshaller
object with the createMarshaller() method of the JAXBContext class, as shown here:

Marshaller marshaller=jaxbContext.createMarshaller();

The Marshaller class has overloaded marshal() methods to marshal into SAX 2 events, a DOM
structure, an OutputStream, a javax.xml.transform.Result, or a java.io.Writer object.

To create a Java object tree for marshaling into an XML document, create an ObjectFactory, as
shown here:

ObjectFactory factory=new ObjectFactory();

For each schema-derived Java class, a static factory method to create an object of that class
is defined in the ObjectFactory class. The Java value class corresponding to the root element
catalog complex type catalogType is CatalogType; therefore, create a CatalogType object with the
createCatalogType() method of the ObjectFactory class:

CatalogType catalog = factory.createCatalogType();



CHAPTER 6 OBJECT BINDING WITH JAXB 175

The root element in the XML document to be marshaled has the attributes section and publisher.
The CatalogType value class provides the setter methods setSection() and setPublisher() for these
attributes. You can set the section and publisher attributes with these setter methods, as shown in
Listing 6-36.

Listing 6-36. Setting the section and publisher Attributes

catalog.setSection("Java Technology");
catalog.setPublisher("IBM developerWorks");

The Java value class for the journalType complex type is JournalType. You create a JournalType
object with createJournalType(), as shown here:

JournalType journal = factory.createJournalType();

To add a JournalType object to a CatalogType object, obtain a parameterized type
List<JournalType> object for a CatalogType object and add the JournalType object to this List,
as shown in Listing 6-37.

Listing 6-37. Adding a journal Element to the catalog Element

List<JournalType> journalList = catalog.getJournal();
journallist.add(journal);

The Java value object for the complex type articleType is ArticleType. You create an ArticleType
object with the createArticleType() method of the ObjectFactory class:

ArticleType article = factory.createArticleType();

The element article has the attributes level and date for which the corresponding setter
methods in the ArticleType value object are setLevel() and setDate(). You can set the attributes
level and date for an article element with these setter methods, as illustrated in Listing 6-38.

Listing 6-38. Setting the Attributes level and date

article.setLevel("Intermediate");
article.setDate("January-2004");

The element article has the subelements title and author. The ArticleType value object has
setter methods, setTitle() and setAuthor(), for setting the title and author elements, as shown in
Listing 6-39.

Listing 6-39. Setting the title and author Elements

article.setTitle("Service Oriented Architecture Frameworks");
article.setAuthor("Naveen Balani");

To add an ArticleType object to a JournalType object, obtain a parameterized type
List<ArticleType> object from a JournalType object, and add the ArticleType object to this List,
as shown in Listing 6-40.

Listing 6-40. Adding an article Element to a journal Element

List<ArticleType> articleList = journal.getArticle();
articlelist.add(article);

To marshal the Java object representation CatalogType to an XML document, you need to
create a JAXBElement object of type CatalogType with the createCatalog(CatalogType) method’s



176

CHAPTER 6 OBJECT BINDING WITH JAXB

ObjectFactory. java class. Subsequently, the JAXBElement is marshaled to an output stream, as
shown here:

JAXBElement<CatalogType> catalogElement=factory.createCatalog(catalog);
marshaller.marshal(catalogElement, System.out);

JAXBMarshaller. java in Listing 6-41 contains the complete program that marshals the
example XML document with the JAXB 2.0 API. In the JAXBMarshaller. java application, the
generateXMLDocument () method is where the marshaled document is saved. You can run the
JAXBMarshaller. java application in Eclipse to marshal the example XML document. The output
from JAXBMarshaller. java is the same as for JAXB 1.0, shown in Listing 6-16.

Listing 6-41. JAXBMarshaller. java

package com.apress.jaxb;
import generated.*;

import javax.xml.bind.*;
import java.util.list;

public class JAXBMarshaller {
public void generateXMLDocument() {
try {

JAXBContext jaxbContext = JAXBContext.newInstance("generated");
Marshaller marshaller = jaxbContext.createMarshaller();
generated.ObjectFactory factory = new generated.ObjectFactory();

CatalogType catalog = factory.createCatalogType();
catalog.setSection("Java Technology");
catalog.setPublisher("IBM developerhWorks");

JournalType journal = factory.createJournalType();
ArticleType article = factory.createArticleType();

article.setlevel("Intermediate");
article.setDate("January-2004");

article.setTitle("Service Oriented Architecture  Frameworks");
article.setAuthor("Naveen Balani");

List<JournalType> journallist = catalog.getJournal();
journallList.add(journal);
List<ArticleType> articlelist = journal.getArticle();
articlelist.add(article);

article = factory.createArticleType();

article.setlevel("Advanced");
article.setDate("October-2003");
article.setTitle("Advance DAO Programming");
article.setAuthor("Sean Sullivan");

articlelist = journal.getArticle();
articlelist.add(article);



CHAPTER 6 OBJECT BINDING WITH JAXB

article = factory.createArticleType();

article.setlLevel ("Advanced");

article.setDate("May-2002");

article.setTitle("Best Practices in EJB  Exception Handling");
article.setAuthor("Srikanth Shenoy");

articlelist = journal.getArticle();

articlelist.add(article);

JAXBElement<CatalogType> catalogElement=factory.createCatalog(catalog);
marshaller.setProperty("jaxb.formatted.output"”,Boolean.TRUE);

marshaller.marshal(catalogElement, System.out);

} catch (JAXBException e) {
System.out.println(e.toString());

}

public static void main(String[] argv) {

JAXBMarshaller jaxbMarshaller = new JAXBMarshaller();
jaxbMarshaller.generateXMLDocument();
}
}

Unmarshaling an XML Document

Unmarshaling means creating a Java object tree from an XML document. In the example use case,
the website receives an XML document containing catalog information, and it needs to unmarshal
this document before it can process the catalog information contained within the document. In this
section, we’ll show first how to unmarshal the example XML document using the JAXB 2.0 AP, and
subsequently we’ll show how to access various element and attribute values in the resulting Java
object tree.

To unmarshal, follow these steps:

1. The example XML document, catalog.xml (Listing 6-7), is the starting point for unmarshaling.
Therefore, import catalog.xml to the Chapter6-JAXB2.0 project in Eclipse by selecting
File » Import.

2. Create a JAXBContext object, and use this object to create an UnMarshaller object.

3. TheUnmarshaller class converts an XML document to a JAXBElement object of type CatalogType.

4. Create a CatalogType object from the JAXBElement object.

As discussed earlier, create a JAXBContext object, which implements the JAXB binding frame-
work unmarshal() operation.

You need an Unmarshaller object to unmarshal an XML document to a Java object. Therefore,

create an Unmarshaller object with the createUnmarshaller () method of the JAXBContext class, as
shown here:

Unmarshaller unMarshaller=jaxbContext.createUnmarshaller();

177



178

CHAPTER 6 OBJECT BINDING WITH JAXB

JAXB 2.0 deprecates the setValidating() method to validate the XML document being unmar-
shaled in favor of the setSchema(Schema schema) method, whereby you can set the schema that
should be used for validation during unmarshaling.

To create a Java object representation of an XML document, unmarshal the XML document to
obtain a JAXBElement object of type CatalogType. Subsequently, obtain a CatalogType object from the
JAXBElement object with the getValue() method, as shown in Listing 6-42.

Listing 6-42. Unmarshaling an XML Document

JAXBElement<CatalogType>

catalogElement = (JAXBElement<CatalogType>)
unmarshaler.unmarshal(xmlDocument);

CatalogType catalog=catalogElement.getValue();

xmlDocument is the File object for the XML document. The unmarshal() method also accepts an
InputSource, an InputStream, a Node, a Source, or a URL as input. The unmarshal() method returns a
Java object corresponding to the root element in the XML document being unmarshaled. This completes
the unmarshaling of the document. Now that you have an object tree, accessing data embedded
within the document is a simple matter of using the right property method on the right object.

The root element catalog has the attributes section and publisher, which may be accessed
with the getSection() and getPublisher() methods, as shown in Listing 6-43.

Listing 6-43. Outputting the section and publisher Attributes

System.out.println("Section: "+catalog.getSection());
System.out.println("Publisher: "+catalog.getPublisher());

You can obtain a List<JournalType> object of JournalType objects for a CatalogType object with
the getJournal() method of the CatalogType value object:

List<JournalType> journallist = catalog.getJournal();

Iterate over the List to obtain the JournalType objects, which correspond to the journal elementin
the XML document, catalog.xml, as shown in Listing 6-44.

Listing 6-44. Retrieving Journal Objects for a Catalog Object

for (int i = 0; 1 < journallList.size(); i++) {
JournalType journal = (JournalType) journallist.get(i);
}

You can obtain a List of ArticleType objects with the getArticle() method of the JournalType
value object, as shown here:

List<ArticleType> articlelist = journal.getArticle();

To obtain ArticleType objects in an ArticleType List, iterate over the List, and retrieve
ArticleType objects, as shown in Listing 6-45.

Listing 6-45. RetrievingArticle Objects from a List

for (int j = 0; j < articlelist.size(); j++) {
ArticleType article = (ArticleType)articlelist.get(j);
}



CHAPTER 6 OBJECT BINDING WITH JAXB

An article element has the attributes level and date and the subelements title and author.
You can access the values for the article element attributes and subelements with getter methods
for these attributes and elements, as shown in Listing 6-46.

Listing 6-46. Outputting article Element Attributes and Subelements

System.out.println("Article Date: "+article.getDate());
System.out.println("Level: "+article.getlevel());
System.out.println("Title: "+article.getTitle());
System.out.println("Author: "+article.getAuthor());

The complete program, JAXBUnMarshaller. java, shown in Listing 6-47, demonstrates how to
unmarshal the example XML document following the steps outlined earlier. The unmarshaling
application has the method unMarshall(File), which takes a File object as input. The input file
should be the document to be unmarshaled.

Listing 6-47. JAXBUnMarshaller. java

package com.apress.jaxb;
import generated.*;
import javax.xml.bind.*;

import java.io.File;
import java.util.list;

public class JAXBUnMarshaller {
public void unMarshall(File xmlDocument) {
try {

JAXBContext jaxbContext = JAXBContext.newInstance("generated");
Unmarshaller unMarshaller = jaxbContext.createUnmarshaller();

JAXBElement<CatalogType> catalogElement = (JAXBElement<CatalogType>)
unMarshaller.unmarshal(xmlDocument);
CatalogType catalog=catalogElement.getValue();
System.out.println("Section: " + catalog.getSection());
System.out.println("Publisher: " + catalog.getPublisher());
List<JournalType> journallist = catalog.getJournal();
for (int i = 0; 1 < journallList.size(); i++) {

JournalType journal = (JournalType) journallist.get(i);

List<ArticleType> articlelist = journal.getArticle();
for (int j = 0; j < articlelist.size(); j++) {
ArticleType article = (ArticleType)articlelist.get(j);
System.out.printIn("Article Date: " + article.getDate());
System.out.println("Level: " + article.getlevel());
System.out.println("Title: " + article.getTitle());
System.out.println("Author: " + article.getAuthor());

179



180 CHAPTER 6 OBJECT BINDING WITH JAXB

}

}
} catch (JAXBException e) {

System.out.println(e.toString());
}
}

public static void main(String[] argv) {
File xmlDocument = new File("catalog.xml");
JAXBUnMarshaller jaxbUnmarshaller = new JAXBUnMarshaller();
jaxbUnmarshaller.unMarshall(xmlDocument);

}
}

The output from unmarshaling the example XML document is the same as for the JAXB 1.0 project.

Binding Java Classes to XML Schema

JAXB 2.0 supports bidirectional mapping between the XML Schema content and Java classes. So far,
you have looked at binding the XML Schema content to Java classes. In this section, you will generate
XML Schema content from a Java class using the JAXB 2.0 binding annotations. Therefore, you need
to define an annotated class: Catalog. java. To this class, you will apply the schemagen tool to generate
a schema definition.

In the Catalog. java class, import the javax.xml.bind.annotation package thatincludes the
binding annotation types. Define the root element with the @mlRootElement annotation. Create a
complex type using the @Xm1Type annotation:

@XmlRootElement

@XmlType(name="", propOrder={"publisher", "edition", "title", "author"})

You specify the annotation element name as an empty string because the complex type is
defined anonymously within an element. You specify the element order using the propOrder anno-
tation element. In the Catalog class, define constructors for the class, and define the different JavaBean
properties (publisher, edition, title, author). The root element catalog has an attribute journal.
Define the journal attribute using the @XmlAttribute annotation:

@XmlAttribute
public String journal;

You also need to define getter and setter methods for the different properties and the journal
attribute. Listing 6-48 shows the complete Catalog. java class.

Listing 6-48. Catalog. java

import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlType;

@XmlRootElement
@XmlType(name = "", propOrder = { "publisher", "edition", "title", "author" })
public class Catalog {

private String publisher;

private String edition;



CHAPTER 6 OBJECT BINDING WITH JAXB 181

private String title;
private String author;

public Catalog() {
}

public Catalog(String journal, String publisher, String edition,
String title, String author) {

this.journal = journal;
this.publisher = publisher;
this.edition = edition;
this.title = title;
this.author = author;

}

@XmlAttribute
public String journal;

private String getJournal() {
return this.journal;

}

public void setJournal(String journal) {
this.journal = journal;

}

public String getPublisher() {
return this.publisher;

}

public void setPublisher(String publisher) {
this.publisher = publisher;
}

public String getEdition() {
return this.edition;

}

public void setEdition(String edition) {
this.edition = edition;

}

public String getTitle() {
return this.title;

}

public void setTitle(String title) {
this.title = title;
}



182 CHAPTER 6 OBJECT BINDING WITH JAXB

public String getAuthor() {
return this.author;

}

public void setAuthor(String author) {
this.author = author;
}
}

You will use the schemagen folder to generate an XML Schema document from the annotated
class Catalog. java.

To generate an XML Schema from the annotated class Catalog. java, you need to create an
external tools configuration for the schemagen tool. To create an external tools configuration, select
Run » External Tools » External Tools. Right-click the Program node, and select New. In the
external tools configuration, specify a configuration name. In the Location field, specify the JAXB 2.0
schemagen.bat file, and for Working Directory, specify ${container_loc}.In the Arguments field, you
need to specify the directory in which the XML Schema is generated using the -d option. Figure 6-13
shows the external tools configuration for the schemagen tool.

& External Tools ﬂ
Create, manage, and run configurations b
Run a program ﬁ_
" |
Configurations: Mame: | SCHEMAGEN

= main | 7 Refresh I P& Environment I = Comman I

r—Location:
| Ci5untjwsdp-2 . 04jaxbibintschemagen. bat
Browse Workspace, .. | Browse File System... | ‘ariables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | Variables. .. |
—Argurnents:
-d "${project_lock/schemagen” "${resource_loct" ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete Apply | Revert: |

Run Close |

Figure 6-13. SCHEMAGEN configuration

To generate the XML Schema from the annotated class Catalog. java, select Catalog. javain the
Package Explorer, and run the SCHEMAGEN configuration. An XML Schema gets generated from the
annotated class, as shown in Figure 6-14.



CHAPTER 6 OBJECT BINDING WITH JAXB

& Java - schemal.xsd - Eclipse SDK = Dlﬂ
File Edit Source Refactor Mawvigate Search Project Run Window Help
IC-ROE % 0% [Sag- & nc - A &
w [El schemat xsd 52 = m fh, ~w
| = Q:D il 1<?xml version="1.0" encoding="UTF-3" standalone="yes"2> d el
510 Chaptert-JAXB2.0 Z<xs:schema version="1.0" xmlns:xs="http://vwuw.w3.org/2001/ZML3chema" i) e [ el

5 sre 3 avallable.

E E Com, apress.jaxh 4 <xsielement name="catalog":>
Catalog.java 5 <xs:icomplexType:>
JaxBMarshaller ja & <XE:iSequencex
JaxBEUnMarshaller . 7 <x3:elewent name="publisher" type="xks:scring” mintocurs="or/
[—]B gen_source =1 <x3:elewent name="edition"” cype="x=:istring™ minOccurs="orS>
{zl catalog xsd 9 <H3:elewent name="titcle™ cype="xs:string" minOcours="or/>
[H-E) JRE Systern Library [JRES. 10 <x3:elewent name="suchor" type="xs:string” minOccurs="o"/>
(&) activation.jar - C:isunijws|| 11 /%3 sequence>
U'a‘:' jab-apl.jar - ChSunijusdl | 2 <xg:attribute name="journal" type="x3:string"/>
[]-%- jaxb-impl.jar - C:\Sunijwsc 13 </x3:comp lexTypes
[]-%- jacbje.jar - C:\Sunl]w?m 14 </xs:elements
ez & ]s.r173._ap\.]ar - C:'ESun\]w- 15/¢/%a: achemas
- sisxpjar - ChSunljwsdp-2 16
== schemagen 19

-
4 | »

Problems | Javadoc | Declaration ECUHSUIE s s&l " ugl s E 3 L={j v g
<terminated:> SCHEMAGEN [Program] C:\Suntjwedp-2 ., 04 jaxbibinischemagen. bat
E

< | i | )3 _’ILI

[ I schemal .xsd - Chapter6-JAXE2, 0fschemagen |

Figure 6-14. XML Schema generated from the annotated class Catalog. java

Summary

JAXB 1.0 specifies XML Schema binding to Java representation. JAXB 2.0 specifies a bidirectional
XML Schema to Java representation. Both specifications provide a binding compiler for generating
schema-derived Java content classes and a runtime framework for the marshaling and unmarshaling of
XML documents.

You can customize the XML Schema binding to Java types through external or inline binding
declarations. The external binding declarations allow the schema definition and customizations to
be cleanly separated and offer the advantage of applying different customizations to the same schema
definition to satisfy different binding objectives. However, external binding declarations rely on
XPath expressions to address binding nodes for customizations and are therefore relatively more
complex to specify than inline bindings, which are specified within the schema definition and thus
address binding nodes implicitly.

JAXB 2.0 provides following advantages over JAXB 1.0:

e Support for all the schema constructs
* Arelatively compact binding of a schema definition to Java content classes

 Bidirectional mapping between schema definition and Java types

We strongly recommend using JAXB 2.0, unless you explicitly need to stay with JAXB 1.0, such
as for backward compatibility.

183






CHAPTER 7

Binding with XMLBeans

XMLBeans,1 just like JAXB, is an XML-to-Java binding and runtime framework. You can use the
binding framework to bind an XML Schema to Java types; you can use the runtime framework to
unmarshal and marshal an XML document to and from its Java binding classes. If you are wondering
why you are studying another XML-to-Java binding, the answer lies in the following reasons:

e XMLBeans provides full support for XML Schema binding to Java types across multiple versions
of the Java platform. Even though JAXB 2.0 provides full support for XML Schema, it requires
J2SE 5.0; XMLBeans is the only XML-to-Java binding with full schema support that works with
J2SE 1.4.x, as well as with J2SE 5.0.

* XMLBeans predates JAXB, and perhaps because of that, it has found its way into many more
commercial products than JAXB, although, admittedly, if JAXB 2.0 is widely adopted, this may
not last into the future.

e XMLBeans defines the XmlObject API for access to XML information content through type-
safe Java classes. XMLBeans also defines the XmlCursor API that provides cursor-based access to
the XML InfoSet that underlies an XML document. This means by using XMLBeans, you can
access and manipulate information content through type-safe Java classes, and you can do so
in a manner that is related to the low-level details within the document, such as the order of
elements or attributes.

* XMLBeans defines the SchemaType API that provides a schema object model for metadata
contained within an XML Schema. This is useful if you want to dynamically create an XML
document that conforms to a schema.

In our opinion, JAXB should be the default choice for a binding framework, because it is part of
the Java Platform Standard Edition. However, in certain situations, for reasons discussed previously
and summarized in Table 7-1, XMLBeans may be the more pragmatic choice.

In this chapter, we will primarily focus on the XMLBeans binding and runtime frameworks. We
will also discuss the XmlCursor API related to the XML InfoSet; however, the APIs related to the
schema object model are beyond the scope of this chapter, mainly because we want to keep the
focus on the binding framework and because the SchemaType API is not central to this focus.

1. This is part of the Apache XML Project; you can find detailed information related to this project at
http://xmlbeans.apache.org/overview.html.

185



186

CHAPTER 7

BINDING WITH XMLBEANS

Table 7-1. XMLBeans vs. JAXB

Feature XMLBeans JAXB

Bidirectional Does not support bidirectional JAXB 2.0 supports bidirectional

mapping mapping between the XML mapping between the XML
Schema and the Java class. Schema and the Java class.

XML Schema Supports all the XML JAXB 2.0 supports all the XML

support Schema constructs. Schema constructs, but JAXB 1.6

does not.

XML document XMLBeans supports XML document ~ JAXB does not support cursors.

navigation navigation with cursors.

XQuery? XMLBeans supports XQuery. JAXB does not support XQuery.

Open source

Root class

XMLBeans is open source.

The XMLBeans JavaBeans
interfaces extend

JAXB is open source.

The JAXB JavaBeans interfaces do
not extend a root interface.

org.apache.xmlbeans.XmlObject.

a. XQuery 1.0 is an XML-based query language (http://www.w3.0rg/TR/xquery/).

Overview

The XMLBeans binding framework includes a binding compiler, which you can invoke through the
scomp command. The XMLBeans runtime framework defines the XmlObject API, which you can use
to marshal or unmarshal an XML document to and from the Java types corresponding to the docu-

ment’s schema.

In this chapter, we will first show how to use the binding compiler to bind an example schema
to its Java types and then show how to use these Java types to marshal and unmarshal an example

XML document. Listing 7-1 shows the example schema.

Listing 7-1. catalog. xsd

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<xs:element name="catalog">
<xs:complexType>
<XS:sequence>
<xs:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="journal">
<xs:complexType>
<XS:sequence>
<xs:element ref="article" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="publisher"
</xs:complexType>
</xs:element>

type="xs:string"/>



CHAPTER 7 BINDING WITH XMLBEANS

<xs:element name="article">
<xs:complexType>
<Xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="author" type="xs:string"/>
</xs:sequence>
<xs:attribute name="level" type="xs:string"/>
<xs:attribute name="date" type="xs:string"/>
<xs:attribute name="section" type="xs:string"/>
</xs:complexType>
</xs:element>

Listing 7-2 shows the example XML document we will marshal and unmarshal. The structure
and content of the example XML document, of course, conforms to the example XML schema.

Listing 7-2. catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog>
<journal publisher="IBM developerWorks">
<article level="Intermediate" date="January-2004" section="Java Technology">
<title>Service Oriented Architecture Frameworks</title>
<author>Naveen Balani</author> </article>
<article level="Advanced" date="October-2003" section="Java Technology">
<title>Advance DAO Programming</title>
<author>Sean Sullivan</author>  </article>
<article level="Advanced" date="May-2002" section="Java Technology">
<title>Best Practices in EJB Exception Handling</title>
<author>Srikanth Shenoy </author> </article>
</journal>
</catalog>

We will show how to compile the example schema with the binding compiler. Subsequently, we
will show how to unmarshal and marshal the example XML document using the Java classes gener-
ated from the schema.

Setting Up the Eclipse Project

Before you can set up your project, you need to download XMLBeans? 2.0 and extract it to an instal-
lation directory. You also need to download the Saxon® 8.1.1 XSLT and the XQuery* processor; you'll
use the Saxon 8.1.1 API to query an XML document with the XmlCursor API. XMLBeans requires at
least J2SE 1.4.x. We are using J2SE 5.0 because we used it for JAXB 2.0, and we think it is convenient
to continue using it for XMLBeans. You may choose to follow suit or use J2SE 1.4.x. If you follow this
choice, download and install J2SE 5.0, in case you have not already done so.

2. You can download the XMLBeans binary version from http://xmlbeans.apache.org/.

3. You can download this from http://sourceforge.net/project/
showfiles.php?group_id=29872&package_id=21888.

4. We'll discuss XQuery in the “Querying XML Document with XQuery” section.

187



188

CHAPTER 7 BINDING WITH XMLBEANS

To compile and run the code examples, you will need an Eclipse project. Download the project
Chapter7 from the Apress website (http://www.apress.com), and import it into your Eclipse work-
space, as described in Chapter 1.

You need some XMLBeans JAR files in your project’s Java build path; Figure 7-1 shows these
JAR files. The JAR files required for an XMLBeans application are xbean. jar, which consists of the
XMLBeans API, and jsr173_api.jar, which implements JSR-173, Streaming API for XML.5 You also
need to set the JRE system library to JRE 5.0,6 as shown in Figure 7-1.

& Properties for Chapter? = |D|ﬂ

[tvpefiter text =] Java Build Path LEI VI

2 Source I = Projects B Libraries | % Order and Export I

JARs and class Folders on the build path:

- isr173_api.jar - C\xMLBeans|xmibeans-2.0. 04 Add JARs... |
Eu saxond.jar - CixMLBeans
&) xbean_xpath.jar - C:\¥MLBeansixmibeans-2.0, Add External JARs. . |
&) xbean.jar - CixMLBeans|xmibeans-2.0. 04 add Variabl
[, JRE System Library [JRES.0] $I
Add Library. ..
Add Class Folder... |

Edit. .. |
Femayve |

4] | B
Default output Folder:

| Chapter? fbuild Browse. .. |
[o]4 I Cancel |

Figure 7-1. Chapter7 project Java build path

You will configure the binding compiler scomp to generate Java content classes in the gen_source
folder; therefore, add the gen_source folder to the source path on the Source tab in the Java build
path area, as shown in Figure 7-2.

Figure 7-3 shows the Chapter7 project directory structure.

5. JSR-173 defines the StAX API, which we covered in Chapter 2. Information about JSR 173 is available at
http://www.jcp.org/en/jsr/detail?id=173.
6. Asnoted, you may choose to use JRE 1.4.x.



CHAPTER 7 BINDING WITH XMLBEANS 189

& Properties for Chapter? = |D|ﬂ

[tvpefiter text =] Java Build Path LEI VI

[# Source |B Projects I =i Libraries I i Order and Export I
Java Compiler

Add Folder... |
Javadoc Location

Project References Edit. .. |
Remave |

Source folders on build path:

Java Code Skyle

[~ allow cutput Folders For source Folders

Default output Folder:

| Chapter? fbuild Browse. .. |
[8]4 I Cancel |

Figure 7-2. Source path for the Chapter7 project

Hierarchy | =g

E:;‘J Chapter?

B2 sre
E|B} com. apress, xmibeans

m AMLBeansCursor,java

m ¥MLBeansMarshaller java

m ¥MLBeansUnMarshaller, java

= gen_source

catalog,xsd

-2, JRE System Library [JRES.0]

Eu xbean.jar - C:lxMLBeans xmibeans-2.0.04lib

&) Jsr173_api.jar - CEMLBeans)xmibeans-2.0.00lib

Eu saxond.jar - CixMLBeans

Eu xbean_xpath.jar - C:\¥MLBeans|xmibeans-2.0.0ib

----- catalog,xml

Figure 7-3. Chapter7 project directory structure

Compiling an XML Schema

In this section, you will first bind the example schema (catalog.xsd, shown in Listing 7-1) to its
corresponding Java types. Subsequently, you will marshal and unmarshal the example XML docu-
ment (catalog.xml, shown in Listing 7-2). As noted earlier, you will use the scomp binding compiler
to bind the example schema. There is a choice of syntax for scomp use, as shown in Listing 7-3.



190

CHAPTER 7 BINDING WITH XMLBEANS

Listing 7-3. scomp Binding Compiler Syntax

scomp [opts] [schema.xsd]* [config.xsdconfig]*
scomp [opts] [directory]

In the first scomp command, [schema.xsd]* is zero or more schemas that are inputs for binding
to their Java types, and [config.xsdconfig]* is zero or more configuration files that contain custom
bindings that influence the binding compiler. The second command shows an alternative syntax for
scomp, whereby [directory] contains input schemas and custom binding files; this is the syntax we
will use in the example. In both the commands, [opts] denotes the scomp compiler options, which
are listed in Table 7-2.

Table 7-2. Scomp Compiler Options

Option Description
-cp [a;b;c] Specifies the classpath.
-d [dir] Specifies the target binary directory for the .class and .xsb files.

An XSB file contains schema metainformation, which is required
for tasks such as binding and validating.

-src [dir] Specifies the target directory for the generated . java files.
-out [xmltypes.jar] Specifies the output JAR file for the XML types.
-compiler Specifies the path to the external Java compiler.

We will show how to run scomp from within Eclipse. Therefore, configure scomp as an external
tool in Eclipse. To configure scomp within Eclipse, you need to execute the following steps:

1. To configure scomp as an external tool, select Run » External Tools. In the External Tools area,
create a new Program configuration by right-clicking the Program node and selecting New.
This adds a new configuration, as shown in Figure 7-4.

2. An external tools configuration consists of the configuration name and location of the scomp
compiler command file. You specify the configuration name in the Name field. The location
of the scomp command file location is in the bin directory of the XMLBeans installation, which
you specify in the Location field. You also need to set the working directory and program
arguments. To set the working directory, click the Variables button for the Working Directory
field, and select the container_ loc variable. This specifies a value of ${container loc}in the
Working Directory field, as shown in Figure 7-4.

3. Inthe Arguments field, you need to set the schema that needs to be compiled with the scomp
compiler. You also need to specify the scomp compiler options -src and -out. (Table 7-2
discussed the compiler options.) In the Arguments field, specify the compiler options -src
and -out, and set the schema resource using the syntax shown in Listing 7-4.



CHAPTER 7 BINDING WITH XMLBEANS 191

Listing 7-4. Arguments Field

-src "${resource _loc}" -out "${resource_ loc}/xmltypes.jar" "${resource loc}"

& External Tools ﬂ
Create, manage, and run configurations b
Run a program
Configurations: Mame: | ¥MLBeans
-4 Ant Build
= Program .
%% “MLBeans El Main | h:>¢1 Refresh I E Environment I £ Comman I
% —Location:
| Cii¥MLBeanstxmibeans-2,0,04binscomp, crmd
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurnents:
-sre "${resource_lock" -out "${resource_lock xmitypes.jart "${resource_loc}" ;I
[~
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),
Mew Delete £ty | Pz |
Run Close |

Figure 7-4. Configuring scomp as an external tool

The variable resource_loc specifies the location of the project folder that is selected at the time
the scomp command is run, and you can add it to the Arguments field by clicking the Variables button
and selecting resource_loc. If the directory in which Eclipse is installed has empty spaces in its path
name, enclose ${resource_loc} in double quotes, as shown in Figure 7-4. To store the new configu-
ration, click the Apply button.

You also need to set the environment variables JAVA_HOME, PATH, and XMLBEANS_LIB in the external
tools configuration for scomp. On the Environment tab, add the environment variables JAVA_HOME,
PATH, and XMLBEANS_LIB, as shown in Figure 7-5. The PATH variable needs to point to the bin directory
under JAVA_HOME because scomp uses the javac compiler from the bin directory to externally compile
some of the generated Java files into class files. The XMLBEANS_LIB variable’s value is the directory
that contains the xbean. jar file.



192 CHAPTER 7 BINDING WITH XMLBEANS

& External Tools

Create, manage, and run configurations B

Run a program

Canfiguratians: Mame: | ¥MLEEANS

(=] main | 5 Refresh I Enviranment | =1 common |

Environment variables ko sek:

Remave

Variable | Value | Mew. .. |
& 1avA_HOME 312565, 0jdk1.5.0_06

® patH :125E5.0{jdk1.5.0_06/bin Se'e—dl
@ SMLBEANS_LIE Cif¥MLBeansxmbeans-2.0.0/lib Edit... |

(o Append environment o native environment

' Replace native environment with specified environment

Apply | Revert |

Mew Delete

Figure 7-5. scomp configuration environment variables

To add the XMLBeans configuration to the External Tools menu, select the Common tab,
and select the check box External Tools in the Display in Favorites area. To run the scomp compiler
on the example schema, select the gen_source folder in the Package Explorer, and then select Run »

External Tools » XMLBeans, as shown in Figure 7-6.



CHAPTER 7 BINDING WITH XMLBEANS 193

& Jlava - XMLBeansUnMarshaller.java - Eclipse SDK == ﬂ

File Edit Source Refactor MNavigate Search Project | pun Window Help

J o ‘ lon J B0 -Q - J @ Q:)Run Last Launched CErlH+HFLL - 5 %3 Debug %JJava
- - ¥, Debug Last Launched F11 E » =03 o =5
2 | B = Run Histary r bl L] =
Run As

= {:pJ Chapter?

A | W
o e B AR e

= £ com.apress xmibeans Diebug History N E
m ¥MLBeansMarshaller.java Disbug fis . = £om. 3pres
: m ¥MLBeansUnMarshaller.java . er impart dec
=, JRE System Library [J1250K1.4.2] 9. YMLBeans
&) wbean jar - CAXMLBeansixmibeans-2.0.0ib E¥yaich File file) e
=5
&, Inspect Ghrl4-SHiREAT
catalog, xsd @ Display Chl+5hft+D [Document =
’ catalog. x| QExecute L tory.parae(file];

Step Into Selection

oy catalog=catalogh

Eoiw
® Toggle Line Breakpoint ot/ ShifE4E Run As L4 LlJ 4] | _’I
8 Toggle Method Breakpoint %Extemal Tadls. .. =R L=‘j o = [l
ﬂ," Toagle Watchpoint Organize Favorites...

" Skip All Breakpoinks

&Remove All Breakpoints

Jg Add Java Exception Breakpoint. ..
{5 add Class Load Breakpoint...

I I gen_source - Chapter?

Figure 7-6. Compiling the XML Schema with the scomp compiler

Java interfaces and classes get generated in the gen_source folder, as shown in Figure 7-7. You
must refresh the Chapter7 project to see the generated files. You use interfaces from the noNamespace
package for marshaling and unmarshaling an XML document. Classes in the noNamespace.impl
package provide an implementation of the interfaces in the noNamespace package.



194 CHAPTER 7 BINDING WITH XMLBEANS

E|{37J 7
5 sre

= gen_source

B3 nolamespacs

0 [J] ArticleDocument java

m CatalogDocument. java
m JournalDocument, java
2 noMamespace.impl

2, JRE System Library [JRES.0]

2 xbean.jar - C\¥MLEsansixmibeans-2.0.01ib

S jsr173_apijar - C:\%MLE=ans)xmibeans-2,0.0b

S saxond.jar - C:i¥MLBeans

& xbean_xpath.jar - C\%MLEsans|xmibeans-2.0.01ib

-

Figure 7-7. Chapter7 directory structure with the Java classes generated from the schema’

Java classes generated from the schema include aJAR file, xmltypes. jar, which you need to add
to the Chapter7 Java build path, as shown in Figure 7-8.

& Properties for Chapter? = |D|ﬂ

[tvpefiter text =] Java Build Path P

Info
Euilders 2 Source I 1= Projects = Libraries | %% order and Export I

2 Bl Pl JARs and class Folders on the build path:

Java Code Skyle —
Java Campiler &) J5r173_api.jar - CEMLBeans)xmibeans-2.0.01lib Add JaRs... |
Javadoc Location & saxond.jar - ClEMLBeans
Project References &) xbean_xpath.jar - C:\¥MLBeansixmibeans-2.0.0lib Add External J4Rs... |

= : ’

xbean.jar - Ci¥MLBeans)xmibeans-2.0.01lb
I ! i ll' 5 by ! Add Yariable. .. |

] apl SOUrCe

=4, JRE System Library [JRES.0] % et (s |

Add Class Folder... |

Edit... |
Remave |

Default output Folder:

Chapter? build Browse. .. |
Ok I Cancel |

Figure 7-8. Adding xmltypes. jar to the Java build path

7. The src directory may show an error icon next to it until binding classes are generated and the Java files
under the src directory are compiled.



CHAPTER 7 BINDING WITH XMLBEANS

The scomp compiler generates a Java interface and an implementation class for each of the top-
level elements in the example schema. For example, for the top-level schema element catalog
excerpted in Listing 7-5, the Java interface CatalogDocument. java (Listing 7-6) gets generated.

Listing 7-5. Schema Element catalog

<xs:element name="catalog">
<xs:complexType>
<XS:sequence>
<xs:element ref="journal" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Listing 7-6. CatalogDocument. java

package noNamespace;
public interface CatalogDocument extends org.apache.xmlbeans.XmlObject {
// .. some code deleted
noNamespace.CatalogDocument.Catalog getCatalog();
void setCatalog(noNamespace.CatalogDocument.Catalog catalog);
noNamespace.CatalogDocument.Catalog addNewCatalog();

public interface Catalog extends org.apache.xmlbeans.XmlObject {
// .. some code deleted
noNamespace.JournalDocument.Journal[] getJournalArray();
// .. some code deleted
void setJournalArray(noNamespace.JournalDocument.Journal[] journalArray);
void setJournalArray(int i, noNamespace.JournalDocument.Journal journal);
// .. some code deleted
public static final class Factory {
public static noNamespace.CatalogDocument.Catalog newInstance() {
return (noNamespace.CatalogDocument.Catalog)
org.apache.xmlbeans.XmlBeans.getContextTypelLoader().
newInstance( type, null );

// .. some code deleted
private Factory() { } // No instance of this class allowed
}
}

public static final class Factory {

public static noNamespace.CatalogDocument newInstance() {
return (noNamespace.CatalogDocument)
org.apache.xmlbeans.XmlBeans.

getContextTypeloader().
newInstance( type, null );

}

// .. some code deleted
private Factory() { } // No instance of this class allowed

195



196 CHAPTER 7 BINDING WITH XMLBEANS

CatalogDocument.java gets generated by default in the package noNamespace, and like all the
XMLBeans compiler—generated interfaces, it extends the org.apache.xmlbeans.XmlObject interface.
Key points about this generated interface are as follows:

* The CatalogDocument. java interface is the Java type mapping for the top-level catalog element
(Listing 7-5). It consists of a nested interface Catalog, which is a mapping for the anonymous
complexType definition within catalog.

* Catalog consists of getter and setter methods for retrieving and setting the journal element
array.

* Both the CatalogDocument and Catalog interfaces define nested Factory classes.

¢ The factory class for the Catalog interface provides the newInstance() methods for creating
instances of the Catalog interface.

¢ The factory class for the CatalogDocument interface provides the newInstance() methods for
creating the new CatalogDocument objects. It also defines the parse() methods for parsing an
XML document with catalog as its root element. The parse() methods return a CatalogDocument
object.

One important concept to keep in mind is that the example schema definition (Listing 7-1)
defines three top-level elements—catalog, journal, and article—so a valid XML document that
conforms to this schema definition can have any one of these three elements as its root element.
This is why scomp generates three Java types: CatalogDocument, JournalDocument, and ArticleDocument.

The implementation classes CatalogDocumentImpl.java, JournalDocumentImpl.java, and
ArticleDocumentImpl.java get generated in the noNamespace.impl package.

Customizing XMLBeans Bindings

You can customize the XML Schema to Java types binding generated by the scomp compiler with an
XMLBeans configuration file. Examples of customizations that can be defined in the configuration
file include the addition of prefixes or suffixes to Java type names and the specification of a custom
package in which the Java types are generated. The elements of a binding configuration file are
defined in the http://www.bea.com/2002/09/xbean/config namespace.8

The default package in which XMLBeans classes get generated is noNamespace. XMLBeans classes
may be generated in another package by specifying a package name in an XMLBeans configuration
file; you can do this in two ways:

¢ Ifthe binding schema has a target namespace, then its target namespace can be mapped to a
package name. For example, the http://xmlbeans/journal namespace can be mapped to the
journal package, as shown in Listing 7-7.

¢ If the binding schema has no target namespace, then it can be mapped to a custom package
name as shown in Listing 7-8.

8. XMLBeans was originally developed by BEA and donated to the Apache Software Foundation in
September 2003.



CHAPTER 7 BINDING WITH XMLBEANS

Listing 7-7. catalog. xsdconfig

<?xml version="1.0" encoding="UTF-8"?>

<xb:config xmlns:journal="http://xmlbeans/journal"”
xmlns:xb="http://www.bea.com/2002/09/xbean/config">
<xb:namespace uri="http://xmlbeans/journal">
<xb:package>journal</xb:package>
</xb:namespace>

</xb:config>

Listing 7-8. catalog. xsdconfig

<?xml version="1.0" encoding="UTF-8"?>
<xb:config xmlns:xb="http://xml.apache.org/xmlbeans/2004/02/xbean/config">
<xb:namespace>
<xb:package>xmlbeans</xb:package>
</xb:namespace>
</xb:config>

To bind the catalog.xsd schema with the configuration file catalog.xsdconfig, import
catalog.xsdconfig into the gen_source folder in the Chapter7 project. To generate Java types with
the configuration file, select the gen_source folder, and run the external tools configuration XMLBeans.
The Java classes get generated in the xmlbeans package, as shown in Figure 7-9. You must refresh the
Chapter7 project to see the new generated files.

m\kﬁerarchy | =g

EES

E|{37‘J Chapter?
-2 st

-8 gen_source

E-H3 xmibeans

1 wmibeans.impl

catalog.xsd

catalog. xsdconfig

wmlbypes. jar

-2, JRE System Library [JRES.0]

H-g xbean.jar - CixMLBeansixmbeans-2.0.0ib

fl-g isr173_apijar - CixMLBeansixmbeans-2.0.0ib

fl-g) saxond.jar - CEMLBeans

Hl-4 xbean_xpath.jar - C¥MLBeans)xmibeans-2.0.00ib

----- |=| catalog.xml

M B e e W

Figure 7-9. Java classes generated in the xmlbeans package

Marshaling an XML Document

In this section, you will marshal the example XML document (catalog.xml) from Java classes generated
with XMLBeans. As the Java classes are compiled from an XML Schema, the XML document gener-
ated from the Java classes conforms to the schema. You first construct a Java object representation
of an XML document, and you subsequently output the Java object as an XML document. The Java
interface that represents an XML document instance is noNamespace.CatalogDocument. Therefore,
create an object of type CatalogDocument, as shown here:

noNamespace.CatalogDocument catalogDoc =
noNamespace.CatalogDocument.Factory.newInstance();

197



198

CHAPTER 7 BINDING WITH XMLBEANS

The root element in an XML document instance is catalog, which is represented with the Java
interface noNamespace.CatalogDocument.Catalog. You can add a Catalog object to a noNamespace.
CatalogDocument object with the addNewCatalog() method, as shown here:

CatalogDocument.Catalog catalog=catalogDoc.addNewCatalog();

The XML document to be marshaled has the element journal in the element catalog. A journal
element is represented with the interface noNamespace.JournalDocument.Journal. You can add a
Journal object to a noNamespace.CatalogDocument.Catalog object with the addNewJournal() method,
as shown in Listing 7-9. The Journal element attribute publisher’s value is set with the method
setPublisher().

Listing 7-9. Adding a Journal Object and Setting the Attribute publisher

noNamespace.JournalDocument.Journal journal=catalog.addNewJournal();
journal.setPublisher("IBM developerWorks");

An article element is represented with the Java interface noNamespace.ArticleDocument.
Article. You add an Article object to a noNamespace.JournalDocument.Journal object with the
addNewArticle() method, as shown in Listing 7-10. You set the level, date, and section attributes
of an article element with setter methods for these attributes.

Listing 7-10. Adding an Article Object and Setting Attributes

articleDocument.Article article=journal.addNewArticle();
article.setLevel("Intermediate");
article.setDate("January-2004");
article.setSection("Java Technology");

You set the values for the title and author subelements of an article element with setter
methods for these elements, as shown in Listing 7-11.

Listing 7-11. Setting the title and author Values

article.setTitle("Service Oriented Architecture Frameworks");
article.setAuthor("Naveen Balani");

Similarly, add another Article object to construct the XML document shown in Listing 7-2.
Listing 7-12 shows the Java application XMLBeansMarshaller. java used to construct the example
XML document. The XMLBeansMarshaller class consists of the method createCatalog(), which creates
aJava object representation of an XML document. An XML document instance is represented with
the CatalogDocument interface. Therefore, create a CatalogDocument object from the Factory class for
CatalogDocument. You add the Java class representation CatalogDocument.Catalog of the root element
catalog to the CatalogDocument object with the addNewCatalog() method. You add the Java class
representation JournalDocument.Journal of the journal element to the Catalog object with the
addNewJournal() method. You add the Java class representation ArticleDocument.Article of the
element article to a Journal object with the method addNewArticle(). You set the values for attributes
and element text with setter methods for these attributes and text nodes.

Listing 7-12. XMLBeansMarshaller. java

package com.apress.xmlbeans;

import noNamespace.*;
import noNamespace.impl.*;



CHAPTER 7 BINDING WITH XMLBEANS 199

public class XMLBeansMarshaller {
//createCatalog method
public CatalogDocument createCatalog() {
//Create a CatalogDocument object from Factory class
CatalogDocument catalogDoc =CatalogDocument.Factory.newInstance();
//Add a CatalogDocument.Catalog object to CatalogDocument object
CatalogDocument.Catalog catalog = catalogDoc.addNewCatalog();
//Add a JournalDocument.Journal object to CatalogDocument.Catalog object
JournalDocument.Journal

journal = catalog.addNewJournal();
//Set value of publisher attribute

journal.setPublisher("IBM developerWorks");
//Add a ArticleDocument.Article object to JournalDocument.Journal object
ArticleDocument.Article

article = journal.addNewArticle();

//Set value of Article object attributes and elements.
article.setTitle("Service Oriented Architecture Frameworks");
article.setAuthor("Naveen Balani");
article.setlevel("Intermediate");
article.setDate("January-2004");
article.setSection("Java Technology");

//Add another Article object
article = journal.addNewArticle();
article.setTitle("Advance DAO Programming");
article.setAuthor("Sean Sullivan");
article.setlLevel("Advanced");
article.setDate("October-2003");
article.setSection("Java Technology");

//Add another Article object
article = journal.addNewArticle();
article.setTitle("Best Practices in EJB Exception Handling");
article.setAuthor("Srikanth Shenoy");
article.setlLevel("Advanced");
article.setDate("May-2002");
article.setSection("Java Technology");

//0utput CatalogDocument object
System.out.println(catalogDoc);
return catalogDoc;

}
public static void main(String[] argv) {

XMLBeansMarshaller marshaller = new XMLBeansMarshaller();
marshaller.createCatalog();



200

CHAPTER 7 BINDING WITH XMLBEANS

To run the XMLBeansMarshaller. java application in Eclipse, right-click the Java file shown in
Listing 7-12, and execute it by selecting Run As » Java Application. Listing 7-13 shows the output
from the marshaling application in Eclipse.

Listing 7-13. Output from Marshaling an XML Document with XMLBeans

<catalog>
<journal publisher="IBM developerWorks">
<article level="Intermediate" date="January-2004" section="Java Technology">
<title>Service Oriented Architecture Frameworks</title>
<author>Naveen Balani</author>
</article>
<article level="Advanced" date="October-2003" section="Java Technology">
<title>Advance DAO Programming</title>
<author>Sean Sullivan</author>
</article>
<article level="Advanced" date="May-2002" section="Java Technology">
<title>Best Practices in EJB Exception Handling</title>
<author>Srikanth Shenoy</author>
</article>
</journal>
</catalog>

Unmarshaling an XML Document

Unmarshalingis binding an XML document to Java classes and accessing XML information content
through type-safe Java classes. In this section, you will unmarshal the example XML document,
catalog.xml, to a Java object representation. To unmarshal the XML document catalog.xml, parse
the document with one of the parse() methods in the Factory class for CatalogDocument in the
CatalogDocument interface. The overloaded parse() methods return a CatalogDocument object.
Listing 7-14 shows the parsing of an XML document with the parse(File) method.

Listing 7-14. Parsing an XML Document with XMLBeans
CatalogDocument catalogDocument=CatalogDocument.Factory.parse(xmlFile);

The variable xm1File specifies a File object representation of the XML document to be parsed.
As discussed eatrlier, the catalog.xsd schema element catalog is represented by the Java interface
noNamespace.CatalogDocument.Catalog. Therefore, obtain a Catalog interface object from the
CatalogDocument object returned by parsing catalog.xml. You can obtain a Catalog object from a
CatalogDocument object with the getCatalog() method, as shown in Listing 7-15.

Listing 7-15. Getting a Catalog Object from the CatalogDocument Object

noNamespace.CatalogDocument.Catalog catalog=catalogDocument.getCatalog();

The element catalog has an array of journal subelements. A journal element is represented
with the noNamespace. JournalDocument.Journal interface. To retrieve journal elements in the
catalog element, get an array of type noNamespace. JournalDocument.Journal[ ] from the noNamespace.
CatalogDocument.Catalog object with the getJournalArray() method, as shown here:



CHAPTER 7 BINDING WITH XMLBEANS

JournalDocument.Journal[] journalArray=catalog.getJournalArray();

The attribute publisher of the element journal may be output by iterating over the Journal[ ]
array and retrieving the publisher attribute with the getPublisher () method, as shown in Listing 7-16.

Listing 7-16. Retrieving the Attribute Publisher

for (int i = 0; i < journalArray.length; i++) {
System.out.println("Journal: " + i);
System.out.println(" publisher : " + journalArray[i].getPublisher());
}

The schema element article is represented by the Java interface noNamespace.ArticleDocument.
Article. You can obtain an array of noNamespace.ArticleDocument.Article[ ] from a noNamespace.
JournalDocument.Journal object with the getArticleArray() method, as shown in Listing 7-17.

Listing 7-17. Getting an Article Object Array from the Journal Object
ArticleDocument.Article[] articleArray=journalArray[i].getArticleArray();

You can output the element and attribute values in an Article object by iterating over the
Article[] array and retrieving values with getter methods for elements and attributes.

You can use the Java application XMLBeansUnMarshaller. java, listed in Listing 7-18, to unmarshal
catalog.xml. XMLBeansUnMarshaller.java consists of a printElements() method, which takes a File
object representing an XML document as an argument. In the printElements() method, the XML
document is parsed to obtain a CatalogDocument object, from which a Catalog object is obtained.
From a Catalog object, which represents the element catalog in the schema catalog.xsd, you obtain
an array of Journal objects. A Journal object represents the element journal in the schema
catalog.xsd. The Journal object array is iterated over to output the attribute publisher of the journal
element. You obtain an array of Article objects from a Journal object. The Article array is iterated
over to output article element attributes and subelements.

Listing 7-18. XMLBeansUnMarshaller. java
package com.apress.xmlbeans;

import noNamespace.*;
import java.io.File;

public class XMLBeansUnMarshaller {
//printElements method
public void printElements(File file) {

try { //Parse XML Document with Factory method parse(File)
CatalogDocument catalogDocument = CatalogDocument.Factory
.parse(file);

//0btain Catalog object from CatalogDocument object
CatalogDocument.Catalog catalog = catalogDocument.getCatalog();

//0btain array of Journal objects from Catalog object
JournalDocument.Journal[] journalArray = catalog.getJournalArray();

201



202 CHAPTER 7 BINDING WITH XMLBEANS

System.out.println("Catalog has
+ " journal elements");
//Iterate over Journal object Array
for (int i = 0; i < journalArray.length; i++) {
System.out.println("Journal: " + i);
//0utput value of publisher Attribute
System.out.println(" publisher : "
+ journalArray[i].getPublisher());
//0btain array of Article objects from Journal object
ArticleDocument.Article[] articleArray = journalArray[i]
.getArticleArray();
//Iterate over Article object array
for (int j = 0; j < articleArray.length; j++) {
System.out.println("Article: " + j);
//0utput Article object attribute and sub element values
System.out.println("Level : " + articleArray[j].getLevel());
System.out.println("Date : " + articleArray[j].getDate());
System.out.println("Section : "

+ articleArray[j].getSection());
System.out.println("Title : " + articleArray[j].getTitle());
System.out.println("Author : "

+ articleArray[j].getAuthor());

+ journalArray.length

}

} catch (org.apache.xmlbeans.XmlException e) {
} catch (java.io.IOException e) {

}
}
public static void main(String[] argv) {

XMLBeansUnMarshaller unmarshaller = new XMLBeansUnMarshaller();
unmarshaller.printElements(new File("catalog.xml"));

Run the XMLBeansUnMarshaller. java application in Eclipse with the procedure explained
in Chapter 1. Listing 7-19 shows the output from unmarshaling an XML document with
XMLBeansUnMarshaller.

Listing 7-19. Output from XMLBeansUnMarshaller. java

Catalog has 1 journal elements

Journal: 0
publisher : IBM developerWorks
Article: o

Level : Intermediate
Date : January-2004



CHAPTER 7 BINDING WITH XMLBEANS

Section : Java Technology

Title : Service Oriented Architecture Frameworks
Author : Naveen Balani

Article: 1

Level : Advanced

Date : October-2003

Section : Java Technology

Title : Advance DAO Programming

Author : Sean Sullivan

Article: 2

Level : Advanced

Date : May-2002

Section : Java Technology

Title : Best Practices in EJB Exception Handling
Author : Srikanth Shenoy

In the following section, you will traverse an XML document with the XmICursor API.

Traversing an XML Document with the
XmiCursor API

XMLBeans has the provision to traverse an XML document with the XmICursor API. An XML cursor
defines a location in an XML document, where operations can be performed on the XML document.
Because a cursor can be created with or without a corresponding XML Schema for an XML docu-
ment, cursors are suited to navigate an XML document when a schema for the XML document is not
available. By locating a cursor at some position in an XML document, you can perform operations
such as getting and setting values, adding elements and attributes, selecting nodes, and querying the
XML document. With XmlCursor, you can perform the following operations:

* Use the token model to navigate an XML document in small increments. Table 7-3 discusses
the token model.

¢ Get and set values within an XML document.

e Modify the structure of an XML document by adding, removing, and moving elements and
attributes.

¢ Select nodes with XPath.

* Query an XML document with XQuery.? XQuery 1.0: An XML Query Language'? is a W3C
Recommendation. It is a SQL-like language for querying XML data sources. We will cover
XQuery briefly within this chapter.

In the XmlCursor API, an XML document is represented with tokens. Table 7-3 shows the token
types and static int fields to represent different tokens types.

In the following sections, we will demonstrate each of these XmlCursor features with an example.
XML cursors are implemented by the XmlCursor interface. Therefore, to navigate an XML document
with XML cursors, import the XmlICursor interface:

import org.apache.xmlbeans.XmlCursor;

9. We will cover XQuery briefly within this chapter.
10. This recommendation is available at http://www.w3.0rg/TR/xquery/.

203



204

CHAPTER 7 BINDING WITH XMLBEANS

Table 7-3. Token Types

Token Type Token Field Description

ATTR INT_ATTR Attribute token type

NAMESPACE INT_NAMESPACE Namespace declaration token type
COMMENT INT_COMMENT Comment token type

PROCINST INT_PROCINST Processing instruction token type
END INT _END End element token type

TEXT INT _TEXT Text token type

ENDDOC INT_ENDDOC End document token type

NONE INT_NONE No-token type

START INT_START Start element token type
STARTDOC INT_STARTDOC Start document token type

Positioning the Cursor

You can create an XML cursor using the newCursor () method of the XmlObject interface. The
CatalogDocument. java interface (Listing 7-6), generated with the XMLBeans compiler for the root
element catalog, extends the Xm10Object interface. To create a new cursor for the example XML docu-
ment, catalog.xml (Listing 7-2), first create a CatalogDocument. java object from the Factory class
method parse(File), as shown in Listing 7-20.

Listing 7-20. Creating a CatalogDocument Object

CatalogDocument catalogDocument = CatalogDocument.Factory.parse(xmlFile);

xmlFile is a File object for the XML document catalog.xml. From the CatalogDocument object,
you can create a new cursor with the newCursor() method, as shown in here:

XmlCursor cursor = catalogDocument.newCursoxr();

The XmlCursor interface provides various methods for navigating an XML document. Table 7-4
shows some of these methods.

Table 7-4. Xm1Cursor Interface Navigation Methods

Method Name
toFirstContentToken()

Description

Moves the cursor to the first token in the content of the
current START or STARTDOC. For the definition of START and
STARTDOC, refer to Table 7-3.

toChild(int index) Moves the cursor to the child element of the specified index.

toChild(String name) Moves the cursor to the first child element of the specified

element name.

toChild(String namespace,
String name)

Moves the cursor to the first child element of the specified
element name in the specified namespace.



CHAPTER 7 BINDING WITH XMLBEANS

Table 7-4. Xm1Cursor Interface Navigation Methods

Method Name Description

toCursor(XmlCursor moveTo) Moves the cursor to the position of moveCursor.
toEndDoc () Moves the cursor to the end of the document.
toEndToken() Moves the cursor to the END or ENDDOC token.
toFirstAttribute() Moves the cursor to the first attribute of this element.
toFirstChild() Moves the cursor to the first child element.
tolastAttribute() Moves the cursor to the last attribute of this element.
tolastChild() Moves the cursor to the last child element.
toNextAttribute() Moves the cursor to the next attribute of this element.
toPrevToken() Moves the cursor to the previous token.

toStartDoc() Moves the cursor to the start of document.

In the example application XMLBeansCursor. java, you will move the cursor to the title element
of the first article element and output the text of the title element. The XML declaration in a docu-
ment is not considered a token; therefore, toFirstContentToken() moves the cursor to the start of
the catalog element, as shown in Listing 7-21. Subsequent invocations of toFirstChild() moves the
cursor to the child elements of the current element. For example, if you want to move the cursor to
the start of the title element, one simple way to do that would be to invoke the toFirstChild()
method three times, as shown in Listing 7-21.

Listing 7-21. Moving the Cursor to the Start of the First title Element

cursor.toFirstContentToken();
cursor.toFirstChild();
cursor.toFirstChild();
cursor.toFirstChild();

The text value of the title element is retrieved with the getTextValue() method, as shown in
Listing 7-22. Subsequently, cursor resources may be deallocated with the dispose() method.

Listing 7-22. Outputting the Value of the Element at the Current Cursor Location

System.out.println(cursor.getTextValue());
cursor.dispose();

Listing 7-23 shows the output from retrieving the title element value in Eclipse. The output in
Listing 7-23 may be generated by commenting out all the methods except the navigateXMLDocument ()
method in XMLCursor. java (Listing 7-35).

Listing 7-23. Output in Eclipse from Navigating an XML Document

Service Oriented Architecture Frameworks

205



206

CHAPTER 7 BINDING WITH XMLBEANS

Adding an Element

In this section, you will add a journal element to the root element catalog. As in the previous
section, obtain a CatalogDocument object for the XML file catalog.xml from the Factory class, and
create a cursor with the newCursor () method:

CatalogDocument catalogDocument = CatalogDocument.Factory.parse(xmlFile);
XmlCursor cursor = catalogDocument.newCursox();

Position the cursor before the start of the catalog element with the toFirstContentToken()
method, and position the cursor before the start of the journal element with the toFirstChild()
method, as shown in Listing 7-24.

Listing 7-24. Moving the Cursor to the Start of the journal Element

cursor.toFirstContentToken();
cursor.toFirstChild();

You create a new element with the beginElement (String) method, and you add a new attribute
with the insertAttributeWithValue(String, String) method. As an example, add a journal element
with a publisher attribute, as shown in Listing 7-25. Subsequently, deallocate cursor resources with
the dispose() method.

Listing 7-25. Adding an Element and an Attribute

cursor.beginElement("journal");
cursor.insertAttributeWithValue("publisher", "IBM developerWorks");
cursor.dispose();

You can output the modified document with the toString() method of the CatalogDocument
object, as shown here:

System.out.println(catalogDocument.toString());

Listing 7-26 shows the output from the modified XML document in Eclipse. You can generate
the output in Listing 7-26 by commenting out all the methods except the addElement () method in
XMLCursor.java (see Listing 7-35).

Listing 7-26. Modlified XML Document with a journal Element Added

<catalog>
<journal publisher="IBM developerWorks"/>
<journal publisher="IBM developerWorks">
<article level="Intermediate" date="January-2004" section="Java Technology">
<title>Service Oriented Architecture Frameworks</title>
<author>Naveen Balani</author>
</article>
<article level="Advanced" date="October-2003" section="Java Technology">
<title>Advance DAO Programming</title>
<author>Sean Sullivan</author>
</article>
<article level="Advanced" date="May-2002" section="Java Technology">
<title>Best Practices in EJB Exception Handling</title>
<author>Srikanth Shenoy</author>
</article>
</journal>
</catalog>



CHAPTER 7 BINDING WITH XMLBEANS

Selecting Nodes with XPath

In this section, you will select nodes in an XML file, catalog.xml, with XPath. The Xm1Cursor interface
method selectPath(String) selects alist of selections or locations in an XML document that may be
navigated to with the toNextSelection() method. The string parameter of the selectPath() method
is an XPath expression. First you need to obtain a cursor from CatalogDocument object, as shown in
Listing 7-27.

Listing 7-27. Creating an XML Cursor

CatalogDocument catalogDocument = CatalogDocument.Factory.parse(xmlFile);
XmlCursor cursor = catalogDocument.newCursor();

Move the cursor to the first child element, and save the cursor’s current location by pushing the
cursor onto a stack of saved locations, as shown in Listing 7-28.

Listing 7-28. Moving the Cursor to the Start of the catalog Element

cursor.toFirstChild();
cursor.push();

As an example, selectall the title elements in the XML document, as shown in Listing 7-29. The
XPath expression to select all the title elementsis $this//title. The current cursor location is
represented with $this, and //title selects all the title elements in the current token. For a refer-
ence to selecting nodes with XPath, refer to Chapter 4.

Listing 7-29. Selecting XML Nodes with XPath
cursor.selectPath("$this//title");

The XmlCursor method toNextSelection() moves the cursor to the next selection in the list of
selections retrieved by the selectPath() method. The method toNextSelection() returns true if the
cursor moves to the next selection. To output all the title elements, move the cursor to all the selections,
and output the cursor value with the getTextValue() method, as shown in Listing 7-30.

Listing 7-30. Outputting the title Element Values

while (cursor.toNextSelection()) {
System.out.println(cursor.getTextValue());

}

Listing 7-31 shows the output from selecting the title elements. You can generate the output
in Listing 7-31 by commenting out all the methods except the selectWithXPath() method in
XMLCursor. java (Listing 7-35).

Listing 7-31. Output in Eclipse of the title Elements selected with XPath

Service Oriented Architecture Frameworks
Advance DAO Programming
Best Practices in EJB Exception Handling

The current location of cursor can be popped off the stack as shown here:

cursor.pop();

207



208

CHAPTER 7 BINDING WITH XMLBEANS

Querying an XML Document with XQuery

In this section, you will query the XML file, catalog.xml, with XQuery.1! XQuery!2 is an SQL-like
language for querying XML data sources. The XmlCursor interface method execQuery(queryExpression)
queries an XML document with an XQuery expression. First, you need to create an XML cursor with
the newCursor () method of a CatalogDocument object, as shown in Listing 7-32.

Listing 7-32. Creating an XML Cursor

CatalogDocument catalogDocument = CatalogDocument.Factory.parse(xmlFile);
XmlCursor cursor = catalogDocument.newCursor();

As an example, query the value of the level attribute in the first article element in the journal
element. You select the XQuery expression for the level attribute as shown in Listing 7-33.

Listing 7-33. XQuery Expression to Select a level Attribute

String queryExpression = "for $a in $this/catalog/journal/article[1]"
+ "return $a/@level”;

The XQuery expression segment for $a in $this/catalog/journal/article[1] defines a vari-
able with $a that selects the first article in the journal element in the catalog element of the current
cursor position. The XQuery expression segment return $a/@level returns the level attribute of the
article element. The query is run with the execQuery(String) method, and the results of the query
are available at the position of resultCursor in a new XML document. You obtain a resultCursor as
shown here:

XmlCursor resultCursor = cursor.execQuery(queryExpression);
You can output the ResultCursor XML fragment as shown here:
System.out.println(resultCursor.getObject().toString() + "\n");

Listing 7-34 shows the output of the resultCursor XML fragment for the example query. You
can generate the output in Listing 7-34 by commenting out all the methods except the
selectWithXQuery() method in XMLCursor. java (Listing 7-35).

Listing 7-34. Output in Eclipse from Selecting an Attribute with XQuery
<xml-fragment level="Intermediate"/>

The example application XMLBeansCursor.java, shown in Listing 7-35, consists of methods for
the different operations discussed in the preceding sections. In the navigateXMLDocument(File xmlFile)
method, an XML file is navigated with an XML cursor, and the value of a title element is output. In the
addElement(File xmlFile) method, a new element is added to an XML file. In the selectWithXPath(File
xmlFile) method, all the title elements in the example XML file are selected, and their values are
output. In the selectWithXQuery(File xmlFile) method, a node in catalog.xml is selected with an
XQuery expression. To run the XMLBeansCursor. java application in Eclipse, follow the procedure in
Chapter 1. The outputs shown in the previous sections for the XMLBeansCursor. java application are
generated by running the application with only one of the section-specific methods in the application.

11. You can find XQuery details at http://www.w3.0rg/TR/xquery/.
12. This is not to be confused with the XPath language, which is quite distinct from XQuery and is designed not
for querying but for addressing parts of an XML document.



CHAPTER 7 BINDING WITH XMLBEANS

Listing 7-35. XMLCursor. java

package com.apress.xmlbeans;

import java.io.File;

import java.io.IOException;

import org.apache.xmlbeans.XmlCursor;
import org.apache.xmlbeans.XmlException;
import noNamespace.CatalogDocument;

public class XMLBeansCursor {
//Method for selecting Nodes with XPath
public void selectWithXPath(File xmlFile) {

try { //0btain an XmlObject object
CatalogDocument catalogDocument = CatalogDocument.Factory
.parse(xmlFile);

//Create an XmlCursor object
XmlCursor cursor = catalogDocument.newCursor();

//Move cursor to first child element
cursor.toFirstChild();

//Push cursor onto stack
cursor.push();

//Select nodes with XPath
cursor.selectPath("$this//title");
while (cursor.toNextSelection()) {

System.out.println(cursor.getTextValue());

}

//Pop cursor
cursor.pop();
} catch (IOException e) {
} catch (XmlException e) {
}

}
//Method to query XML document with XQuery
public void selectWithXQuery(File xmlFile) {

try { //Create a cursor
CatalogDocument catalogDocument = CatalogDocument.Factory
.parse(xmlFile);

XmlCursor cursor = catalogDocument.newCursor();
//Specify XQuery expression
String queryExpression = "for $a in $this/catalog/journal/article[1]
+ "return $a/@level”;
//Run XQuery query
XmlCursor resultCursor = cursor.execQuery(queryExpression);
//0utput result of XQuery
System.out.println(resultCursor.getObject().toString() + "\n");

} catch (IOException e) {
} catch (XmlException e) {
}

}
//Method to add an Element
public void addElement(File xmlFile) {

209



210 CHAPTER 7 BINDING WITH XMLBEANS

try { //Create a cursor
CatalogDocument catalogDocument = CatalogDocument.Factory
.parse(xmlFile);

XmlCursor cursor = catalogDocument.newCursor();

//Move cursor to start of root Element
cursor.toFirstContentToken();

//Move cursor to first child element
cursor.toFirstChild();

//Add an Element
cursor.beginElement("journal");

//Add an attribute
cursor.insertAttributeWithValue("publisher", "IBM developerWorks");
cursor.dispose();

//0utput modified document
System.out.println(catalogDocument.toString());

} catch (IOException e) {
} catch (XmlException e) {
}

}
//Method to navigate an XML document

public void navigateXMLDocument(File xmlFile) {

try { //Create a CatalogDocument object and create a cursor
CatalogDocument catalogDocument = CatalogDocument.Factory
.parse(xmlFile);

XmlCursor cursor = catalogDocument.newCursoxr();

//Move cursor to start of root Element
cursor.toFirstContentToken();

//Move cursor to start of first child Element
cursor.toFirstChild();

//Move cursor to start of article element
cursor.toFirstChild();

//Move cursor to start of title element
cursor.toFirstChild();
System.out.println(cursor.getTextValue());

//Dispose cursor
cursor.dispose();

} catch (IOException e) {
} catch (XmlException e) {
}



CHAPTER 7 BINDING WITH XMLBEANS

public static void main(String[] args) {

XMLBeansCursor xmlBeansCursor = new XMLBeansCursor();
File xmlFile = new File("catalog.xml");

xmlBeansCursor.navigateXMLDocument(xmlFile);
xmlBeansCursor.addElement(xmlFile);
xmlBeansCursor.selectWithXPath(xmlFile);

xmlBeansCursor.selectWithXQuery(xmlFile);

Summary

XMLBeans is an XML-to-Java binding and runtime framework that is similar to JAXB. You can use
the binding framework to bind an XML Schema to Java types. XMLBeans offers complete support for
all XML Schema constructs. You can use a binding configuration file to customize XML Schema to
Java type bindings. You can use the runtime framework to unmarshal and marshal an XML docu-
ment to and from Java objects that are instances of bound Java types.

In addition to marshaling and unmarshaling an XML document, XMLBeans offers low-level
navigational support through the XmlCursor API. Using the XmlCursor API, you can position a
cursor at a specified location and modify the document content at that location. This API also provides
support for addressing document content with XPath and querying an XML document using the
XQuery language.

In our opinion, JAXB 2.0 should be the default choice for an XML Schema to Java types binding
framework, mainly because of the following reasons:

e Itis part of the Java standards.

* It offers support for the bidirectional mapping between XML Schema content and Java types.

However, the following pragmatic reasons may indicate XMLBeans to be the more appropriate
choice:

* You are looking for full XML Schema support, but you are not ready to move to J2SE 5.0.

* During the marshaling process, you want low-level control over the XML markup contained
in the marshaled XML document.

* During the unmarshaling process, you want to use XPath to address specific nodes within the
XML document, or you want to use the XQuery language to query the content of an XML
document.

211






PART 3

XML and Databases







CHAPTER 8

Storing XML in Native
XML Databases: Xindice

N ative XML databases define a logical model for storing, retrieving, and updating an XML docu-
ment. An XML document is the unit of storage in a native XML database. Native XML databases store
XML documents as collections that may be queried, updated, and modified. XML documents stored
in a native XML database collection are not constrained by any schema; this is unlike relational data-
bases where data stored in a database is constrained by an underlying database schema. You can use
XPath to query a native XML database; you can use the XML:DB XUpdate language to update a
native XML database.

Most relational databases also support XML storage; therefore, it is pertinent to compare XML
storage in a native XML database with XML storage in a relational database. Table 8-1 offers such
a comparison.

Table 8-1. Comparison of Native XML Databases with Relational XML Databases

Feature Native XML Database Relational Database
Database The XML document is the basic unit of Data is stored in rows and columns.
structure storage represented by hierarchies of
elements.
Order Elements are ordered. Row ordering is not defined.
Schema A schema definition is not used to A schema may be used to constrain
constrain an XML document. data structure.
Query Querying is performed with XPath. Querying is performed with SQL.
Application Suitable for storing complex XML docu- Suitable for storing XML documents
ments with attributes and subelements. that need to be stored and retrieved

as a single unit.

In this chapter, we will discuss general native XML database concepts in the context of the
Xindice! native XML database. Xindice is an open source native XML database that can be used to
store, retrieve, query, and update XML documents. Since Xindice is one of many native XML databases,

1. Pronounced as “zeen-dee-chay,” Xindice is an Apache project; you can find more information at
http://xml.apache.org/xindice/.

215



216 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

it begs the obvious question, why did we choose to focus on Xindice? Well, we decided to focus on
Xindice as a representative native XML database for three main reasons:

¢ Xindice was designed from the ground up as a native XML database, and since that is all it
purports to do, it is fairly simple to understand.

* Xindice is fairly compact, easy to install, and simple to administer.
¢ Xindice provides command-line tools and standards-based APIs to administer, access, and

modify an instance of the Xindice database.

Of course, we encourage you to explore other native XML databases, and when you do so, you
can transfer the basic concepts you learn in this chapter in the context of Xindice to other native
XML databases. Table 8-2 lists some of the other commonly used native XML databases.

Table 8-2. Native XML Databases

Database Description More Information
Berkeley DB XML Open source native XML database http://www.sleepycat.com/
dbXML Open source native XML database http://www.dbxmlgroup.com/

More relevant than the question of why should you focus on Xindice is the question, why do you
need a native XML database? Here are some key points that can answer this pertinent question:

¢ Arelational database is indeed sufficient if all you want to do is store and retrieve complete
XML documents.

¢ However, if you want to query a collection of stored XML documents and retrieve parts of
these documents or you want to update parts of these stored XML documents without first
retrieving a complete document, changing it, and storing it back, then you need a native XML
database.

¢ Itis of course theoretically possible to map an XML document to a relational database schema.
However, in practice, it is easier to marshal an XML document from a relational database
than to unmarshal an XML document into a relational database. The simple reason for this
asymmetry is that when the tree structure of an XML document is mapped to the grid structure
of arelational database, information related to the document model is lost and any queries or
updates that rely on the document model are impossible.

¢ The storage unit within a native XML database is a document. The model of an XML database
is not concerned only with storing XML data within a document but is also concerned with
retaining all the information about the document model.

¢ Since a native XML database retains information about the document model, it is possible
to query a native XML database using the XPath language and update it using the XML:DB
XUpdate? language, which is an XPath-based update language.

Just like working with relational databases, you need tools, query languages, and programming
APIs to administer, access, and modify native XML databases. Fortunately, you have all those things
available to you in Xindice, and you will explore them in detail in this chapter.

2. This is part of the XML:DB initiative; you can find more information at http://xmldb-org.sourceforge.net/
xupdate/xupdate-wd.html#N1f64158.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Overview

From a logical point of view, an instance of the Xindice database is comprised of hierarchical collec-
tions, where each collection may contain nested collections and XML documents. Each query is
performed over a collection, which is also referred to as a collection context. In a default installation
of Xindice, the root collection within an instance of the Xindice database is named db, and therefore
the root collection context is identified by the context path /db.

Simple Example

It is perfectly appropriate to think of collections within the Xindice database as analogous to file
system folders and to think of documents stored within these collections as documents stored in
folders. It is also useful to think of a reference path to a collection context as analogous to a file
system path. With this intuitive understanding in place, let’s look at a simple example.

Say you are an auto parts supplier and you have an XML document that stores information
about windshield wiper blades for a 2006 Ford Mustang convertible, as shown in the following
example document:

<?xml version='1.0' encoding="UTF-8' ?>
<wipers>
<blade location="driver" part="FMWD256783">
<description>Driver side wiper blade</description>
<size>22 inches</size>
</blade>
<blade location="passenger" part="FMWP256783">
<description>Passenger side wiper blade</description>
<size>20 inches</size>
</blade>
</wipers>

You may decide that putting data about wiper blades for all makes and models of cars in a single
collection may not be efficient so you decide to come with a more hierarchical scheme and store the
example document shown previously in a collection context that looks as follows:

/db/parts/Ford/Mustang/2006/Convertible/

Now, assume you want to query this collection for information about the driver’s side wiper
blade. Since we have not yet talked about how you can query a collection, you will ignore the mechanics
of putting together a query and instead look at an example query from a purely intuitive standpoint. Here
is an example query that would extract information related to the driver’s side blade using the Xindice
command tool and the XPath query language:

xindice xpath
-c /db/parts/Ford/Mustang/2006/Convertible/
-q "/wipers/blade[@location="driver']"

Can you intuitively see what is going on? Ignore everything in this query for now except for the
collection context, which is /db/parts/Ford/Mustang/2006/Convertible/, and the XPath query, which
is "/wipers/blade[@location="driver']". Based on these two pieces alone, you can intuitively see
that the query searches the given collection context for all the blade elements that are nested within
awipers element and that have a location attribute equal to driver. All elements that match this
XPath expression no matter which document they are in are returned by this query.

217



218

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Itis of course entirely reasonable to assume that in addition to documents related to windshield
wipers, you may choose to store other XML documents in this collection that contain data about
other parts associated with this specific car. The key take-away from this simple example is that how
you organize your collections and documents is entirely up to the needs of your application, as long
as you keep in mind the following important points:

¢ Within a collection, you are allowed to store collections or XML documents.
¢ Xindice will not complain if objects of different types within a collection have the same name.

* You need to be aware that there is a precedence order that resolves name conflicts among
different types of objects, and this order is as follows: collection and XML document. The
most practical thing to do is to of course not have any name conflicts among different types
of objects within a collection.

* Xindice is designed to store small- to medium-sized documents, so avoid storing large
XML documents. It is recommended that you break up large documents into separate
smaller documents.

Xindice database content may be accessed and modified using either the XML:DB API or the
Xindice command-line tool. In this chapter, we will first discuss the command-line tool and then the
XML:DB API. However, before we can do either, you need to download and install the Xindice soft-
ware, which is what we will discuss next.

Installing the Xindice Software

The Xindice database is installed as a web application in a J2EE application server such as JBoss.
To install an instance of the Xindice database, you need the Xindice APIJAR files and the Xindice
web application. Therefore, download?® xm1-xindice-1.1b4-jar.zip (version 1.1 b4 Binary (JAR)),
which contains the Xindice XML:DB API JAR files, and xml-xindice-1.1b4-war.zip (version 1.1 b4
Binary (webapp)), which contains the Xindice web application. Extract the contents of the
xml-xindice-1.1b4-jar.zip and xml-xindice-1.1b4-war.zip archive files to your desired Xindice
installation directory, for example, C:/. There is duplication of some files in these archives, so it is all
right to overwrite files while extracting files from these archives.

To run the Xindice database, you need Apache Xerces? or the Xerces25 XML parser classes in the
classpath. By default, Xindice will use whatever XML parser classes are available in the JRE that you
use with Xindice. Since the XML parser classes included in J2SE 1.4.2 are based on the Crimson
parser, using Xindice 1.1b4 with J2SE 1.4.2 generates errors. To avoid these errors, the easiest thing
to do is to use J2SE 5.0, since J2SE 5.0 includes the Xerces2 parser classes.

Before you can proceed, you need to deploy the Xindice web application within an application
server. In the next section, we will cover how to deploy Xindice within the JBoss 4.0.2 application server.

3. You can download these Xindice zip files from http://xml.apache.org/xindice/download.cgi.
4. You can download the Xerces classes from http://xerces.apache.org/xerces-j/.
5. You can download the Xerces-2j classes from http://xerces.apache.org/xerces2-j/.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE 219

Configuring Xindice with the JBoss Server

For the purpose of this discussion, we’ll assume you have access to an installation of the JBoss 4.0.26
application server. Assuming <jboss-4.0.2> is the JBoss 4.0.2 installation directory, you need to set
the JAVA_HOME variable in the <jboss-4.0.2>\bin\run batch file to J2SE 5.0. Also, assuming <Xindice> is
the Xindice installation directory, you need to rename <Xindice>/xindice-1.1b4/xindice-1.1b4.war to
xindice.war and then copy the xindice.war file to the <jboss-4.0.2>\server\default\deploy directory.

The default Xindice database location is [Xindice-Web-Application-directory]/WEB-INF/db,
where Xindice-Web-Application-directory is a temporary directory that is automatically created by
the JBoss application server when xindice.war is deployed. Most likely, you will want to modify this
default location. To modify this default database location, you have two options:

* Your first option is to edit the WEB-INF/system.xml file in the xindice.war file and set the
dbroot attribute in the root-collection element to your desired location for the Xindice data-
base. For example, the following entry in system.xml specifies the database location to be
C:/xindice/db/:

<root-collection dbroot="C:/xindice/db/" name="db" use-metadata="on" >

To edit system.xml, you will of course need to expand the xindice.war archive file, edit the
file, and then rebuild the archive file.

* Your second option is to set a Java system property called xindice.db.home to your desired
database location. You can set this property in the <jboss-4.0.2>\bin\run batch file that is
used to start the JBoss application server.

To open the default Xindice database, you need to start the JBoss server. Start the JBoss server
through the <jboss-4.0.2>\bin\run batch file. When the JBoss server starts, the Xindice server web
application gets deployed, and at this point the Xindice database is ready for access. Assuming the
JBoss application server is listening on its default web port of 8080, the root collection context path
is given by xmldb:xindice://localhost:8080/db. To check whether Xindice is running on JBoss,
invoke the URL http://localhost:8080/xindice in a browser (assuming of course that your JBoss
server is listening on port 8080 on the local host).

To access the Xindice database using the Xindice command-line tool and to run the Xindice
Java application code examples included in this project, you need to create an Eclipse Java project,
which is discussed next.

Creating an Eclipse Project

You can download the Chapter8 project from the Apress website (http://www.apress.com) and import it
into your Eclipse workspace.

You need to add some Xindice JAR files to the Java build path of the Chapter8 project. Assuming
<Xindice> is the Xindice installation directory, you need to add the JAR files listed in Table 8-3 to the
Java build path.

6. You can download the JBoss 4.0.2 (or later) application server from http://www. jboss. com/.



220

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Table 8-3. Xindice JAR Files

Xindice JAR File Description
<Xindice>/xindice-1.1b4/1ib/xerces-2.6.0.jar Xerces XML parser
<Xindice>/xindice-1.1b4/xindice-1.1b4.jar Core Server API

<Xindice>/xindice-1.

<Xindice>/xindice-1

<Xindice>/xindice-1

<Xindice>/xindice-1.
<Xindice>/xindice-1.
<Xindice>/xindice-1.

<Xindice>/xindice-1.

<Xindice>/xindice-1.

1b4/1ib/commons-logging-1.0.3.jar

.1b4/lib/xalan-2.5.2.jar XPath API

.1b4/1ib/xmldb-api-20030701.jar
1b4/1ib/xmldb-api-sdk-20030701.jar
1b4/1ib/xmldb-common-20030701. jar XUpdate API
1b4/1ib/xmldb-xupdate-20040205. jar

1b4/1ib/xmlrpc-1.1.jar

XML-RPC API

1b4/1ib/xml-apis.jar DOM API

You also need to set the Chapter8 JRE to the J2SE 5.0 JRE. The JRE is also set in the project Java
build path by clicking the Add Library button. Figure 8-1 shows the Chapter8 Java build path.

& Properties for Chapters

I bype filker bext VI

Jawva Build Path - =

S=TE

2 Source I = Projects B Libraries | % Order and Export I
JARs and class Folders on the build path:

L5155 51 515151 5] 5]

1

& commons-lagging-1.0.3.jar - Cri¥Indicelxindice-1. bt Add JARs... |
=

| xerces-2.6.0.jar - C\xIndicelxindice-1. 1b4\lib Add External JARs... |
| xindice-1,1b4.jar - Ci¥Indicelxindice-1. 1b4 P

| xml-apis.jar - CHxIndicelxindice-1. 1b4Ylib $I
| xmidb-api-20030701 . jar - C:xIndicelxindice-1, 1b4ilib add Library. .. |
| xmidb-api-sdk-20030701 jar - C:ixIndicelxindice-1, 1b4y

| xmldb-common-20030701 . jar - CXIndicelxindice-1.1b4 add Class Faolder... |

| xmidb-xupdate-20040205, jar - CixIndicelxindice-1,1b4

| xmirpe-1.1.jar - ChxIndicelxindice-1. 1b4ilib Edit |
+-2), JRE System Library [JRES.0]

xalan-2,5.2.jar - CixIndicelxindice-1, 1b4ilib

Remayve |

Default output Folder:

| Chaptersbuild Browse. .. |

Ok I Cancel |

Figure 8-1. Chapter8 project Java build path

Jakarta Commons Logging API

Implementations of the
XML:DB API and the



CHAPTER 8

STORING XML IN NATIVE XML DATABASES: XINDICE

The XML file catalog.xml in the xindice_resources folder will be an input XML document to
the XIndiceDB. java application; therefore, add the xindice_resources folder to the source path on
the Source tab in the Java build path area, as shown in Figure 8-2.

& Properties for Chapters

I bype filker bext VI

Jawva Build Path

S=TE

G D -

Source folders on build path:

Java Code Skyle

[# Source |B Projects I =, Libraries | %% Order and Export I

[ Chapters/src

Java Compiler
Javadoc Location
Project References

% Edit... |

[~ allow cutput Folders For source Folders

Add Folder... |
Remave |

Default output Folder:

| Chaptersbuild

Browse. .. |

o1

Cancel |

Figure 8-2. Chapter8 project source path

Figure 8-3 shows the Chapter8 project directory structure.

Hierarchy | =g

E:;‘J Chapterd

B2 sre

E|B} com, apress, xindice

m ¥IndiceDE.java

= xindice-resources

catalog,xml

wupdate, xml

JRE System Library [JRES.0]

xerces-2,6,0,jar - CixIndicelxindice-1, 1b4tlib

& xalan-2.5.2.jar - CiixIndicetxindice-1, 1b4Ylib
commons-logging-1.0.3.jar - CixIndicelxindice-1, 1b4tlib
& xml-apis.jar - Ci\xIndicelxindice-1. 1b4Ylib

2 xmidb-api-20030701 jar - C:\¥Indicelxindice-1, 1b4ilib

& xmidb-api-sdk-20030701.jar - C:\%Indicetxindice-1, 1b4ilib
2 xmidb-common-20030701 . jar - CiyxIndicelxindice-1, 1b4lib
&) xmidb-xupdate-20040205.jar - C:i¥Indicelxindice-1. 1b4ilib
& xmirpe-1.1.jar - CiyxIndicelxindice-1, 1b4lib

& xindice-1,1b4.jar - CiixIndicelxindice-1. 164

e 0 O O e O o O e B B B

Figure 8-3. Chapter8 project directory structure

221



222 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Before you can run the XIndiceDB application, you need to configure a Java application within
Eclipse using the procedure discussed in Chapter 1. You also need to define an XINDICE_HOME envi-
ronment variable with the value <Xindice>/xindice-1.1b4, as shown in Figure 8-4.

X

Create, manage, and run configurations —

Run a Java application ( I ;)

Configurations: Mame: |><IndiceDB
4@ Eclipse Application

] Java Applet = , —=

[ Java Application & main I (= Arguments I =i JRE I “i; Classpath I E. source P& Environment | £ Common I
] IndiceDE
fg jﬂ::i Plug-in Test ieliabl I Value I =0

. -
@L SWT Application ® LINDICE_HOME CiixIndicelxindice-1,1b4

% Environment variables ko sek:

Select...
Edit. ..

Remayve

i

* Append environment o native environment

" Replace native environment with specified environmenkt

Mew Delete Apply | Revert: |

Figure 8-4. XIndiceDB. java application environment variables

Using the Xindice Command-line Tool

The following sections focus on details related to using the Xindice command-line tool.

Command Syntax

You access the Xindice command-line tool with the xindice command. The basic syntax of the
xindice command is as follows:

xindice action [switch] [parameter]

Table 8-4 lists the commonly used xindice command action values.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Table 8-4. Xindice Command Action Values

Xindice Action Description

ac Adds a collection

dc Deletes a collection

ad Adds a document

dd Deletes a document

lc Lists the collections

rd Retrieves a document

1d Lists documents in a collection
xpath Queries a document using XPath
xupdate Updates a document using XUpdate

Table 8-5 lists frequently used xindice command switch values.

Table 8-5. Xindice Command Switch Values

Xindice Switch Description

-C Specifies a collection context. The context syntax is of the format
xmldb:xindice://host:port/db.

-f Specifies a file path.

-n Specifies a name.

-q Specifies an XPath query.

Command Configuration in Eclipse

You will run the xindice command in Eclipse. Therefore, configure xindice as an external tool in
Eclipse. To configure xindice as an external tool, select Run » External Tools. In the External Tools
area, you need to create a new Program configuration, which you do by right-clicking the Program
node and selecting New. This adds a new configuration, as shown in Figure 8-5. In the new configu-
ration, specify a name for the configuration, and in the Location field, specify a path to the xindice
batch or shell file, which resides in the xindice-1.1b4/bin folder.

You also need to set the working directory and program arguments. To set the working direc-
tory, click the Variables button for the Working Directory field, and select the container_ loc variable.
This specifies a value of ${container loc} in the Working Directory field. This value implies that
whatever file is selected at the time xindice is run, that file’s parent directory becomes the working
directory for xindice. Figure 8-5 shows the XINDICE external tools configuration.

223



224 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
ey
Run a program T 1
= |
Configurations: Mame: |><INDICE
=] main | 7 Refresh I P& Enviranment I £ Comman I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurents:
=
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete

Apply | Revert |

Run Close |

Figure 8-5. XINDICE external tools configuration

In the Arguments field, you need to set the arguments passed to the xindice command. You
can do that by clicking the Variables button for the Arguments field and selecting the variable

resource_loc. The value ${resource loc} means that whatever file is selected at the time xindice is

run, that file becomes an argument to xindice. If the directory in which Eclipse is installed has
empty spaces in its path name, enclose ${resource_loc} within double quotes. Because the argu-
ments depend on the Xindice database operation, arguments are not specified in Figure 8-5. To
store the new configuration, click the Apply button. You also need to set the environment variable
JAVA_HOME for the XINDICE external tools configuration. Select the Environment tab, and add
the JAVA_HOME environment variable by clicking the New button, as shown in Figure 8-6.




CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE 225

& External Tools

Create, manage, and run configurations

Run a program

Configurations: Mame: | XINDICE

(=] main | 5 Refresh @ Enviranment | =1 common |

Environment variables ko sek:

‘ariable | alue | Mew, ..
& 10vA_HOME 12565, k1 .5.0_06

Select...

Edit...

Remave

Ul

* Append environment o native environment

" Replace native environment with specified environment

Mew Delete Apply | Revert: |

Figure 8-6. Setting the environment variable

Xindice Command Examples

In this section, we will demonstrate how to use the Xindice command-line tool to access the Xindice
database. You will create a collection in a database instance, add an example XML document to the
collection, retrieve the example XML document, query the document using XPath, update the docu-
ment using XUpdate, and delete the document, all with the Xindice command-line tool. The Xindice
database instance in which the collection is created is the default database, db. Listing 8-1 shows the
example XML document that is added to the db database.



226

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Listing 8-1. catalog. xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog title="OnJava.com" publisher="OReilly">
<journal date="Sept 2005">
<article>
<title>What Is a Portlet</title>
<author> Sunil Patil</author>
</article>
</journal>
<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
<journal date="Oct 2003">
<article>
<title>BCEL Maven and CSS with Swing</title>
<author>Daniel Steinberg</author>
</article>
</journal>
</catalog>

Creating a Collection in the Xindice Database

In this section, you will create an instance of the Xindice database collection using the Xindice
command-line tool. For example, to create a top-level collection named catalog, you can use the
following xindice command:

xindice ac -c xmldb:xindice://localhost:8080/db -n catalog

The Xindice command action ac specifies that a collection be added, the -c switch specifies the
collection context as the root context, and the -n switch specifies the collection name as catalog.
Figure 8-7 shows the external tools configuration XINDICE.

You can run the XINDICE configuration with the specified arguments by clicking the Run
button. The Xindice command-line tool creates the collection catalog in the db database and prints
the message shown in Listing 8-2.

Listing 8-2. Output from Adding a Collection

trying to register database
Created : xmldb:xindice://localhost:8080/db/catalog



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
Run a program ﬁ—
" |
Configurations: Mame: |><INDICE

E| Program .
%% W INDICE = main | 5 Refresh I P& Environment | £ Comman I
r—Location:
| CixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘ariables. .. |
—Argurents:
ac -c xmldb:xindice: /flocalhost:8080/db -n catalog ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete Apply | Revert: |

Run Close |

Figure 8-7. XINDICE external tools configuration to add a collection

Adding an XML Document to the Xindice Database

In this section, you will add your example XML document, catalog.xml (Listing 8-1), to the catalog
collection. Listing 8-3 shows the Xindice command to add an XML document to a collection.

Listing 8-3. Xindice Command to Add an XML Document

xindice ad
-c xmldb:xindice://localhost:8080/db/catalog
-f <XML File to add> -n catalog.xml

The Xindice ad action specifies that an XML document be added, -c specifies the collection
context as the catalog collection, the -f switch specifies the XML file to add to collection, and the -n
switch specifies the XML filename in the collection.

You will run this Xindice command in Eclipse. Therefore, you need to modify the Arguments
tab in the XINDICE external tools configuration and specify the arguments listed in Listing 8-3 using
the Eclipse ${resource_loc} variable for <XML File to add>, as shown in Figure 8-8. To run the XINDICE
configuration with the specified arguments, select the catalog.xml document in the xindice_resources
folder on the Package Explorer tab of the project Chapter8 and click the Run button, as shown in
Figure 8-8.

227



228 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
ey
Run a program T
" |
Configurations: Mame: |><INDICE
-4 Ant Build
= Program = =
%% WINDICE El Main | h:>¢1 Refresh I E Environment | L Common I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurents:
ad -c xmidb:xindice:/flocalhost:3080/db/catalog -F "${resource_loct" -n catalog.xml ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),
Mew Delete £ty | Pz |
[, Run I Close |

Figure 8-8. XINDICE configuration for adding an XML document

The XML document catalog.xml gets added to the catalog collection, as indicated by the
xindice message in Listing 8-4.

Listing 8-4. Output in Eclipse from Adding an XML Document

trying to register database
Added document xmldb:xindice://localhost:8080/db/catalog/catalog.xml

Retrieving an XML Document from the Xindice Database

In this section, you will retrieve the XML document catalog.xml from the catalog collection. Listing 8-5
shows the Xindice command to retrieve an XML document from a collection.

Listing 8-5. Xindice Command to Retrieve an XML Document
xindice rd -c xmldb:xindice://localhost:8080/db/catalog -n catalog.xml

The Xindice rd action specifies that an XML document be retrieved, the -c switch specifies the
collection context to be the catalog collection, and the -n switch specifies the XML filename in the
catalog collection that is to be retrieved.

You will run this Xindice command to retrieve the XML file catalog.xml in Eclipse. Therefore,
modify the arguments in the XINDICE external tools configuration, and specify the arguments listed
in Listing 8-5, as shown in Figure 8-9. To run the XINDICE configuration with the specified arguments,
click the Run button, as shown in Figure 8-9.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE 229

& External Tools ﬂ
Create, manage, and run configurations B
Run a program @
Configurations: Mame: |><INDICE
-4 Ant Build
= Program =
%% WINDICE El Main | h:>¢1 Refresh I E Environment I £ Commaon I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | Variables. .. |
—Argurents:
rd - xmldb: xindice: fflocalhost:8080/dbjcatalog  -n catalog.xml ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Apply | Reyert |

|
N

Mew Delete

Figure 8-9. XINDICE configuration for retrieving an XML document

The XML document catalog.xml gets retrieved from the catalog collection, as shown in the
xindice command output in Listing 8-6.

Listing 8-6. Output in Eclipse from Retrieving an XML Document

trying to register database
<?xml version="1.0"?>
<catalog title="OnJava.com" publisher="OReilly">
<journal date="Sept 2005">
<article>
<title>What Is a Portlet</title>
<author> Sunil Patil</author>
</article>
</journal>
<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
<journal date="Oct 2003">



230

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

<article>
<title>BCEL Maven and CSS with Swing</title>
<author>Daniel Steinberg</author>
</article>
</journal>
</catalog>

Querying Xindice Database Using XPath

Xindice provides an XPath query engine to query the XML document in the database using XPath. In
this section, you will query the example XML document in the Xindice database using XPath. You
query the XML document using the xindice xpath action. For example, Listing 8-7 shows the command
to retrieve title of article in the first journal element.

Listing 8-7. Xindice Command to Query an XML Document

xindice xpath
-c xmldb:xindice://localhost:8080/db/catalog
-q /catalog/journal[1]/article/title

The Xindice xpath action specifies that an XPath query be executed, the -c switch specifies the
collection context to be the catalog collection, and the -q switch specifies the XPath query to retrieve
title of article in the first journal element.

You will run this Xindice command in Eclipse. Therefore, modify the arguments in the XINDICE
external tools configuration to specify the arguments listed in Listing 8-7, as shown in Figure 8-10.
To run the XINDICE configuration with the specified arguments, click the Run button, as shown in
Figure 8-10.

Listing 8-8 shows the output from the XPath query.

Listing 8-8. Output in Eclipse from Querying an XML Document

trying to register database
<title src:col="/db/catalog" src:key="catalog.xml" xmlns:src="http://xml.apache.
org/xindice/Query">What Is a Portlet</title>

As another example, the command to retrieve the publisher attribute of the catalog element is
as follows:

xindice xpath -c xmldb:xindice://localhost:8080/db/catalog -q /catalog/@publisher



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE 231

& External Tools ﬂ
Create, manage, and run configurations B
Run a program @
Configurations: Mame: |><INDICE
-4 Ant Build
= Program =
%% WINDICE El Main | h:>¢1 Refresh I E Environment I £ Comman I
r—Location:
| CxIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurents:
xpath -c xmidb:xindice: /flocalhost: 8080/db/catalog -q [catalogfjournall 1]} article title ;I
[~
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete Apply | Revert: |

[ Run I Clase |

Figure 8-10. XINDICE configuration to query an XML document

To run the XINDICE configuration with the specified arguments, click the Run button, as shown
in Figure 8-11.

Listing 8-9 shows the output from the XPath query. In this case, the XPath query output is
generated as an xq:result element. The attribute value publisher="0Reilly" is specified in the
xq:result element.

Listing 8-9. Output in Eclipse from Querying an XML Document

trying to register database
<xq:result publisher="OReilly" xmlns:xq="http://xml.apache.org/xindice/Query" xq
:col="/db/catalog" xq:key="catalog.xml" />



232 CHAPTER 8

STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
Run a program @
Configurations: Mame: |><INDICE
-4 Ant Build
= Program =
%% WINDICE El Main | h:>¢1 Refresh I E Environment I £ Commaon I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘ariables. .. |
—Argurents:
xpath -c xmidb:xindice: /flocalhost: 8080/db/catalog -q fcatalog/@publisher ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),
Mew Delete £ty | Pz |
Run Close |

Figure 8-11. XINDICE configuration to query an XML document

Modifying Documents Using XUpdate Commands
Xindice implements XML:DB XUpdate commands to update an XML document; Table 8-6 lists these

commands.

Table 8-6. XUpdate Commands

XUpdate Command

Description

xupdate:insert-after
xupdate:update

xupdate:remove

Adds a node after the selected node
Updates the selected node

Removes the selected node




CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Adding an Element

In this section, you’ll add a journal element to the catalog.xml document in the catalog collection.
You need to specify the elements and attributes to be updated in an xupdate configuration file.
Therefore, you will use the xupdate.xml (Listing 8-10) configuration file to add a journal element.

Listing 8-10. xupdate.xml

<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:insert-after select="/catalog/journal[3]">
<xupdate:element name="journal">
<xupdate:attribute name="date">Aug 2005</xupdate:attribute>
<article>
<title>iBatis DAO</title>
<author>Sunil Patil</author>
</article>
</xupdate:element>
</xupdate:insert-after>
</xupdate:modifications>

Listing 8-11 shows the Xindice command to update the XML document catalog.xml in the
catalog collection.

Listing 8-11. Xindice Command to Update an XML Document

xindice xupdate
-c xmldb:xindice://localhost:8080/db/catalog
-n catalog.xml -f "${resource loc}"

The Xindice xupdate action specifies that an XML document be updated, the -c switch specifies
the collection context to be the catalog collection, the -n switch identifies the XML document to be
updated, and the -f switch specifies the variable ${resource_loc} corresponding to the xupdate.xml
configuration file.

The Xindice command to update the XML file catalog.xml is run in Eclipse. Therefore, modify
the arguments in the XINDICE external tools configuration, and specify the arguments listed in
Listing 8-11. To run the XINDICE configuration with the specified arguments, select the xupdate.xml
document in the xindice_resources folder on the Package Explorer tab in the Chapter8 project, and
click the Run button, as shown in Figure 8-12.

The XML document catalog.xml in the catalog collection gets updated, as shown by the output
message in Listing 8-12.

Listing 8-12. Output in Eclipse from Updating an XML Document

trying to register database
1 documents updated

233



234 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
ey
Run a program T 1
|
Configurations: Mame: |><INDICE
-4 Ant Build
= Program .
%% WINDICE El Main | h:>¢1 Refresh I E Environment I £ Comman I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Wariables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | Variables. .. |
—Argurents:
xupdate -c xmidb:xindice: /flocalhost: 8080/db/catalog -n catalog.xml -F "${resource_lock" ;I
[~
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete Apply | Revert: |

[ Run I Clase |

Figure 8-12. XINDICE configuration to update an XML document

Deleting and Modifying an Element

As another example, you will remove a journal element and modify the title attribute in another
journal element. Let’s remove the first journal element and modify title in the third journal
element. Since the first journal element is removed before the third journal element is updated, the
journal element to be updated becomes the second journal element. You use xupdate:remove to
remove an element and xupdate:update to update an element. Listing 8-13 shows the XUpdate
configuration file xupdate.xml for removing and modifying elements. To run the XINDICE configu-
ration using xupdate.xml, replace the contents of the xupdate.xml file in the xindice resources
folder with Listing 8-13.

Listing 8-13. Xupdate. xml

<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate">

<xupdate:remove select="/catalog/journal[1]"/>

<xupdate:update select="/catalog/journal[2]/article/title">

Maven with Swing</xupdate:update>

</xupdate:modifications>



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Listing 8-11 shows the Xindice command to update catalog.xml in the catalog database collec-
tion using the xupdate.xml configuration file. To run the XINDICE configuration with the specified
arguments, select the modified xupdate.xml document in the xindice_resources folder on the
Package Explorer tab of the Chapter8 project, and click the Run button. This updates the document
catalog.xml in the catalog collection. The output from updating an XML document is the same as
listed in Listing 8-12. To retrieve the modified XML document, run the xindice command to retrieve
an XML document, listed in Listing 8-5. Listing 8-14 shows the modified document.

Listing 8-14. Modified XML Document in the Xindice Database

trying to register database
<?xml version="1.0"?>
<catalog title="OnJava.com" publisher="OReilly">

<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
<journal date="Oct 2003">
<article>
<title>Maven with Swing</title>
<author>Daniel Steinberg</author>

</article>
</journal><journal date="Aug 2005"> <article» <title>iBatis DAO</title>
<author>Sunil Patil</author> </article> </journal>
</catalog>

Deleting an XML Document

In this section, you will delete an XML document from a Xindice collection. Listing 8-15 shows the
Xindice command to delete catalog.xml from the catalog collection.

Listing 8-15. Xindice Command to Delete an XML Document
xindice dd -c xmldb:xindice://localhost:8080/db/catalog -n catalog.xml

The Xindice dd action specifies that an XML document be deleted. The Xindice switch -c speci-
fies the collection context as catalog. The Xindice switch -n specifies the XML catalog.xml as the
document to be deleted. The Xindice command to delete catalog.xml is run in Eclipse. Therefore,
modify the arguments in the XINDICE external tools configuration, and specify the arguments listed
in Listing 8-15. To run the XINDICE configuration with the specified arguments, click the Run button, as
shown in Figure 8-13.

This deletes the document catalog.xml from the catalog collection, as indicated by the output
message shown in Listing 8-16.

Listing 8-16. Output in Eclipse from Deleting an XML Document

trying to register database
DELETED: xmldb:xindice://localhost:8080/db/catalog/catalog.xml

235



236 CHAPTER 8

STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations b
ey
Run a program T
|
Configurations: Mame: |><INDICE
E| Program : _
%% W INDICE = main | 7 Refresh I P& Environment | £ Comman I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘Variables. .. |
—Argurents:
dd -c xmidb:xindice:/flocalhost: 3080 db/catalog -n catalog,xml ;I
E
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Delete

Apply | Reyert

Run Close

Figure 8-13. XINDICE configuration to delete an XML document

Deleting a Xindice Collection

In this section, you will delete the collection catalog from the Xindice database. You can delete the

catalog collection using the command listed in Listing 8-17.

Listing 8-17. Xindice Command to Delete a Collection

xindice dc -c xmldb:xindice://localhost:8080/db -n catalog

The Xindice dc action specifies that a collection be deleted. The Xindice switch -c specifies the
collection context as db. The Xindice switch -n specifies the collection to be deleted as catalog. The
Xindice command to delete the collection catalog is run in Eclipse. Therefore, modify the arguments
in the XINDICE external tools configuration, and specify the arguments listed in Listing 8-17. To run
the XINDICE configuration with the specified arguments, click the Run button, as shown in Figure 8-14.

The Xindice collection catalog gets deleted, as indicated by the output message in Listing 8-18.

Listing 8-18. Output in Eclipse from Deleting a Collection

trying to register database
Deleted: xmldb:xindice://localhost:8080/db/catalog




CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

& External Tools ﬂ
Create, manage, and run configurations 9
ey
Run a program r_l__
" |
Configurations: Mame: |><INDICE
-4 Ant Build
= Program . =
%% WINDICE El Main | h:>¢1 Refresh I E Environment | L Common I
r—Location:
| CiixIndicelxindice- 1, 1b4ibintxindice bat
Browse Workspace, .. | Browse File System... | Variables. .. |
—Working Directory:
| $4{container_lock
Browse Workspace, .. | Browse File System... | ‘ariables. .. |
—Argurents:
dc -c xmldb:xindice: /flocalhost:8080/db -n catalog ;I
[~
Variables. .. |
Mote: Enclose an argument containing spaces using double-quotes (),

Mew Delete Apply | Revert: |

s, Run I Close |

Figure 8-14. XINDICE configuration to delete a collection

Using Xindice with the XML:DB API

In the following sections, we will demonstrate the Xindice XML:DB API to access the Xindice data-
base. As in the Xindice command-line section, you will create a collection in a database instance,
add an example XML document to the collection, retrieve the example XML document, query the
document with XPath, update the document using XUpdate, and delete the document. The Xindice
database instance in which the collection is created is the default database, db. Listing 8-1 lists the
example XML document, catalog.xml, to the db database. XIndiceDB. java in the Chapter8 project
will be used to access the Xindice database using the XML:DB API.

Creating a Collection in the Xindice Database

In this section, you will create a collection in the Xindice database using the XML:DB API. You need
to import the Xindice core server classes and the XML:DB API classes listed in Listing 8-19.

Listing 8-19. XML:DB API Packages

import org.apache.xindice.client.xmldb.services.*;
import org.apache.xindice.util.XindiceException;
import org.apache.xindice.xml.dom.*;

import org.xmldb.api.*;

import org.xmldb.api.base.*;

import org.xmldb.api.modules.*;

237



238

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

First, you need to create an instance of the Xindice database engine. The XML:DB driver imple-
mentation class for the Xindice database is DatabaseImpl. To create an instance of the Xindice database,
load the Xindice driver using the Class.forName () method, obtain an instance of the Xindice driver,
and cast the Xindice driver instance to the database interface org.xmldb.api.base.Database. Subse-
quently, register the Xindice database using the org.xmldb.api.DatabaseManager class, which is used
to obtain a collection from a XML:DB database. Listing 8-20 shows the code snippet to create an
instance of the Xindice database.

Listing 8-20. Creating an Instance of the Xindice Database

String xindiceDriver = "org.apache.xindice.client.xmldb.DatabaseImpl”;

org.xmldb.api.base.Database xindiceDatabase = (org.xmldb.api.base.Database)
((Class.forName(xindiceDriver)).newInstance());

org.xmldb.api.DatabaseManager.registerDatabase(xindiceDatabase);

The default root collection in a Xindice database server is db. To create a new collection in db,
you need a CollectionManager instance, which is obtained from a Collection object. Therefore,
before you can create a CollectionManager, you need a Collection object corresponding to the db
collection. You obtain a Collection object using the static method getCollection(String) of the
DriverManager class. The String parameter of the getCollection() method specifies that the
XML:DB URL should access the Xindice server. Listing 8-21 shows how you obtain a Collection
object for the db collection.

Listing 8-21. Creating a Collection Object

String url = "xmldb:xindice://localhost:8080/db";
org.xmldb.api.base.Collection collection = DatabaseManager.getCollection(url);

From the Collection object, you need to create an
org.apache.xindice.client.xmldb.services.CollectionManager object. A CollectionManager is
required to create and delete collections from a database. You also need to specify a collection name
and an XML configuration, which defines the structure of a collection, to create a collection. XML
configurations are not very well documented in Xindice. Therefore, you will use the default XML
configuration in the Xindice documentation for creating a collection. With a CollectionManager
object, create a collection using the createCollection method, as shown in Listing 8-22.

Listing 8-22. Creating a Collection from a CollectionManager Object

CollectionManager collectionManagerService =
(CollectionManager)
collection.getService("CollectionManager”, "1.0");

String collectionName = "catalog";
String collectionConfig = "<collection compressed=\"true\" " +
" name=\"" + collectionName + "\">" +
<filer class=\"org.apache.xindice.core.filer.BTreeFiler\"/>" +
"</collection>";

org.xmldb.api.base.Collection catalogCollection =
collectionManagerService.createCollection (collectionName,
DOMParser.toDocument (collectionConfig));

The createCollection(String path, Document configuration) method creates a new collection
of the specified collection name in the database using the specified XML collection configuration.
A new collection, catalog, gets created in the db collection.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Adding an XML Document to the Xindice Database

In this section, you will add an XML document to the collection created in the previous section.
The example XML document will be added to the catalog collection; therefore, obtain the catalog
collection from the database using the getCollection() method, as shown in Listing 8-23.

Listing 8-23. Obtaining a Collection from DriverManager

Collection collection = DatabaseManager.getCollection
("xmldb:xindice://localhost:8080/db/catalog");

An XML document resource in the Xindice database is represented with the XMLResource inter-
face. You can set the content of an XMLResource using a DOM node or a SAX ContentHandler. In the
example application, you will set the content of XMLResource using a DOM node. Therefore, obtain a
Document object for the XML document to be added, as shown in Listing 8-24.

Listing 8-24. Creating a Document Object

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

File datafile = new File("xindice_resources/catalog.xml");

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(datafile);

In Listing 8-25, you create a File object of the XML document to be added using the

xindice resources/catalog.xml file. You need to create an ID for the XML document resource to be
added to collection. The ID associates the collection with an identifier. An XML document in the
Xindice database is represented with the XMLResource interface; therefore, create an org.xmldb.api.
modules.XMLResource object for the XML document to add to the catalog collection. You can set the
content of the XMLResource from a Document object. To store the XML document in the database, you
need to add the XML resource to the catalog collection using the storeResource(XMLResource) method.
Listing 8-25 lists the procedure to create an XMLResource and add the resource to a collection.

Listing 8-25. Adding an XML Resource to a Collection

String resourceID = collection.createld();
XMLResource resource = (XMLResource)
(collection.createResource(resourcelD, "XMLResource"));
resource.setContentAsDOM(document);
collection.storeResource(resource);

The example XML document, catalog.xml, gets added to the database collection.

Retrieving an XML Document from the Xindice Database

In this section, you will retrieve an example XML document from the Xindice database using the
XML:DB API. An XML resource in the Xindice database is identified with a resource ID. A resource ID
was created and set on the XML document to store in the previous section. With the same resource
ID, obtain the XML resource from the database. You can output the XML document in the XML
resource using the getContent () method. Listing 8-26 shows the procedure to obtain an XMLResource
and XML document in the XML resource.

239



240

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Listing 8-26. Retrieving an XML Resource

XMLResource resource = (XMLResource)
(collection.getResource(resourcelD));
System.out.println(resource.getContent());

The XML document added in the previous section gets retrieved.

Querying the Xindice Database Using XPath

In this section, you will query the Xindice database using the XML:DB API. You will look at a query to
find title of article in the first journal element. An XPath query expression is specified as a String,
as shown here:

String xpath = "/catalog/journal[1]/article/title";

The org.xmldb.api.modules.XpathQueryService service is used to query a database collection.
Therefore, create an XPathQueryService object. Subsequently, query the database using the
XpathQueryService.query() method. The query returns an org.xmldb.api.base.ResourceSet.

A ResourceSet consists of XML resources. To retrieve an XML resource, iterate over the resource set
and obtain an XML document resource org.xmldb.api.base.Resource. Listing 8-27 shows the proce-
dure to query the Xindice database using an XPath query, iterate over the resource set returned by
the query, and output XML document in a resource.

Listing 8-27. Querying Xindice

XPathQueryService queryService =
(XPathQueryService)
collection.getService("XPathQueryService","1.0");
ResourceSet resourceSet = queryService.query(xpath);
Resourcelterator iterator = resourceSet.getIterator();
while (iterator.hasMoreResources()) {
Resource resource = iterator.nextResource();
System.out.println(resource.getContent());

Modifying the Document Using XUpdate

In the following sections, you will update the XML document in the Xindice database using the
XML:DB and XUpdate APIs. Some of XUpdate commands to update an XML document were listed
in Table 8-4.

Adding an Element Using the XML:DB API

In this section, you will update the example XML document using the XML:DB API. As an example,
you will add a journal element after the third journal element. You specify the XUpdate commands
in an XUpdate string as in Listing 8-28. The XUpdate command xupdate:insert-after adds an
element after the element specified in the select attribute.



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Listing 8-28. XUpdate Configuration String for Adding an Element

String xupdate =

"<xupdate:modifications version=\"1.0\"" +

" xmlns:xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:insert-after select=\"/catalog/journal[3]\">" +
<journal date=\"Aug 2005\">" + " <article>" +

" <title>iBatis DAO</title>" +

<author>Sunil Patil</author>" + " </article>" +
</journal>" + " </xupdate:insert-after>" +

"</xupdate:modifications>";

The query service class org.xmldb.api.modules.XUpdateQueryService is used to update the
database through XUpdate. Therefore, create an XUpdateQueryService object from the collection to
update using the getService() method. The Xindice database can be updated using the update()
method of the XUpdateQueryService object, as shown in Listing 8-29.

Listing 8-29. Updating a Collection Using XUpdate

XUpdateQueryService queryService =

(XUpdateQueryService) collection.getService("XUpdateQueryService",
"1.0" );

queryService.update(xupdate);

Deleting an Element Using the XML:DB API

As another example, we will show how to remove a journal element from the XML document in
the database using the xupdate:remove command. To remove the first journal element, create an
XUpdate command String shown in Listing 8-30. The element to remove is specified in the select
attribute of the xupdate:remove element.

Listing 8-30. XUpdate Configuration for Deleting an Element

String xupdate = "<xupdate:modifications version=\"1.0\"" +
" xmlns:xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:remove select=\"/catalog/journal[1]\"/>" +
"</xupdate:modifications>";
queryService.update(xupdate);

Modifying an Element Using the XML:DB API

In this section, you will modify an element using the xupdate:update command. As an example,
modify title of article in the second journal element. You need to create an XUpdate command
String to update the XML document, as shown in Listing 8-31. The element to be modified is speci-
fied in the select attribute of the xupdate:update element.

Listing 8-31. XUpdate Configuration for Modifying an Element

String xupdate = "<xupdate:modifications version=\"1.0\"" +

! xmlns:xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:update select=\"/catalog/journal[2]/article/title\"> +
Maven with Swing</xupdate:update>" +
"</xupdate:modifications>";

queryService.update(xupdate);

24



242

CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

Deleting an XML Document

In this section, you will delete the XML document in the Xindice database using the XML:DB API.
You need to obtain the catalog collection from which an XML document is to be deleted and obtain
a XML resource to delete, as shown in Listing 8-32. You can obtain an XML resource with a resource
ID. Subsequently, you can delete the resource using the removeResource(XMLResource) method.

Listing 8-32. Deleting an XML Resource

XMLResource resource = (XMLResource)
(collection.getResource(resourcelD));
collection.removeResource(resource);

Listing 8-33 shows XIndiceDB. java. Listing 8-25 showed the XIndiceDB. java code. You use the
XIndiceDB class to accomplish the following:
Create an XML document collection in the Xindice database.
Add an XML document to an instance of the Xindice collection.
Retrieve an XML document from an instance of the Xindice collection.
Query an XML document using XPath.
Update an XML document using XUpdate.

[ L

Delete an XML document from the Xindice database.

Listing 8-33. XIndiceDB. java

package com.apress.xindice;

import org.apache.xindice.client.xmldb.services.*;
import org.apache.xindice.util.XindiceException;
import org.apache.xindice.xml.dom.*;

import org.w3c.dom.Document;

import org.xml.sax.SAXException;

import org.xmldb.api.*;

import org.xmldb.api.base.*;

import org.xmldb.api.modules.*;

import java.io.*;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

public class XIndiceDB {
private Collection collection;
private Collection catalogCollection;
String resourcelD;

public void createCollection() {
try {
String xindiceDriver = "org.apache.xindice.client.xmldb.DatabaseImpl”;
Database xindiceDatabase = (Database)
((Class.forName(xindiceDriver)).newInstance());
DatabaseManager.registerDatabase(xindiceDatabase);



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

String url = "xmldb:xindice://localhost:8080/db";
collection = DatabaseManager.getCollection(url);

String collectionName = "catalog";

CollectionManager collectionManagerService =
(CollectionManager) collection.getService
("CollectionManager",

}

e o o e e

"1.0");
String collectionConfig = "<collection compressed=\"true\" " +
" name=\"" + collectionName + "\">" +
<filer class=\"org.apache.xindice.core.filer.BTreeFiler\"/>" +
"</collection>";

catalogCollection = collectionManagerService.

createCollection(collectionName,
DOMParser.toDocument(collectionConfig));

System.out.println("XIndice Collection Created");

catch (XindiceException e) {

catch (XMLDBException e) {

catch (ClassNotFoundException e) {
catch (InstantiationException e) {
catch (IllegalAccessException e) {

public void addDocument() {

try {

String xindiceDriver = "org.apache.xindice.client.xmldb.DatabaseImpl”;
Database xindiceDatabase = (Database)
((Class.forName(xindiceDriver)).newInstance());
DatabaseManager.registerDatabase(xindiceDatabase);
collection = DatabaseManager.getCollection(
"xmldb:xindice://localhost:8080/db/catalog");

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

File datafile = new File("xindice-resources/catalog.xml");
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse(datafile);

resourceID = collection.createld();

XMLResource resource = (XMLResource)

(collection.createResource(resourcelD,
"XMLResource"));

resource.setContentAsDOM(document);

collection.storeResource(resource);
System.out.println("XML Document Added to Collection");

243



244 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

}

catch (SAXException e) {

} catch (ParserConfigurationException e) {

} catch (XMLDBException e) {
System.out.println(e.getMessage());

} catch (IOException e) {
System.out.println(e.getMessage());

} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());

} catch (InstantiationException e) {
System.out.println(e.getMessage());

} catch (IllegalAccessException e) {
System.out.println(e.getMessage());

}

}

public void retrieveDocument() {
try {
XMLResource resource = (XMLResource)
(collection.getResource(resourcelD));

System.out.println(resource.getContent());
} catch (XMLDBException e) {
}
}

public void queryDocument() {
try {
String xpath = "/catalog/journal[1]/article/title";
XPathQueryService queryService =
(XPathQueryService) collection.getService("XPathQueryService",
"1.0");
ResourceSet resourceSet = queryService.query(xpath);
Resourcelterator iterator = resourceSet.getIterator();
System.out.println("XPath Query");
while (iterator.hasMoreResources()) {
Resource resource = iterator.nextResource();

System.out.println(resource.getContent());
}
} catch (XMLDBException e) {
}
}

public void updateDocument() {
try {

String xindiceDriver = "org.apache.xindice.client.xmldb.DatabaseImpl”;

Database xindiceDatabase = (Database)
((Class.forName(xindiceDriver)).newInstance());

DatabaseManager.registerDatabase(xindiceDatabase);

collection = DatabaseManager.getCollection(

"xmldb:xindice://localhost:8080/db/catalog");



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

String xupdate = "<xupdate:modifications version=\"1.0\"" +

" xmlns :xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:insert-after select=\"/catalog/journal[3]\">" +
<journal date=\"Aug 2005\">" + " <article>" +
! <title>iBatis DAO</title>" +
<author>Sunil Patil</author>" + </article>" +
</journal>" + " </xupdate:insert-after>" +

"</xupdate:modifications>";

XUpdateQueryService queryService =
(XUpdateQueryService) collection.getService
("XUpdateQueryService",
"1.0");
queryService.update(xupdate);

xupdate = "<xupdate:modifications version=\"1.0\"" +
" xmlns :xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:remove select=\"/catalog/journal[1]\"/>" +

"</xupdate:modifications>";

queryService.update(xupdate);

xupdate = "<xupdate:modifications version=\"1.0\"" +

! xmlns:xupdate=\"http://www.xmldb.org/xupdate\">" +
<xupdate:update select=\"/catalog/journal[2]/article/title\">"+
"Maven with Swing</xupdate:update>" +
"</xupdate:modifications>";

queryService.update(xupdate);

XMLResource resource = (XMLResource)
(collection.getResource(resourcelD));
System.out.println("Updated XML Document");
System.out.println(resource.getContent());

} catch (XMLDBException e) {

} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());

} catch (InstantiationException e) {
System.out.println(e.getMessage());

} catch (IllegalAccessException e) {
System.out.println(e.getMessage());

}

public void deleteDocument() {
try {
XMLResource resource = (XMLResource)
(collection.getResource(resourcelD));
collection.removeResource(resource);
System.out.println("XML Document Deleted");

} catch (XMLDBException e) {
}

245



246 CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

public static void main(String[] argv) {
XIndiceDB xindicedb = new XIndiceDB();
xindicedb.createCollection();

xindicedb.addDocument();
xindicedb.retrieveDocument();
xindicedb.queryDocument();
xindicedb.updateDocument();
xindicedb.deleteDocument();

You can run the XIndiceDB. java application in Eclipse using the XIndiceDB Java application
configuration. As shown in Listing 8-34, a collection is created, an XML document is added to the
collection, the XML document is retrieved, and the XML document is queried, updated, and deleted.

Listing 8-34. Output in Eclipse from Running the XIndiceDB. java Application

trying to register database
XIndice Collection Created
trying to register database
XML Document Added to Collection
<?xml version="1.0"?>
<catalog publisher="OReilly" title="OnJava.com">
<journal date="Sept 2005">
<article>
<title>What Is a Portlet</title>
<author> Sunil Patil</author>
</article>
</journal>
<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
<journal date="Oct 2003">
<article>
<title>BCEL Maven and CSS with Swing</title>
<author>Daniel Steinberg</author>
</article>
</journal>
</catalog>
XPath Query
<title src:col="/db/catalog" src:key="022705cf47a9e€3090000010bb028b689" xmlns:sr
c="http://xml.apache.org/xindice/Query">What Is a Portlet</title>
trying to register database
Updated XML Document
<?xml version="1.0"?>
<catalog publisher="OReilly" title="OnJava.com">



CHAPTER 8 STORING XML IN NATIVE XML DATABASES: XINDICE

<journal date="Sept 2005">
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
<journal date="Oct 2003">
<article>
<title>Maven with Swing</title>
<author>Daniel Steinberg</author>
</article>
</journal><journal date="Aug 2005"> <article> <title>iBatis DAO</title>
<author>Sunil Patil</author> </article> </journal>
</catalog>
XML Document Deleted

Summary

Native XML databases define a model for storing and retrieving an XML document. Native XML
databases store XML documents in collections and support querying with XPath and updating with
the XML:DB XUpdate APIs, respectively. Native XML databases have an advantage over relational
databases in that the native XML databases are specifically designed for storing, querying, and
updating XML documents, whereas relational databases are designed to store atomic values within
a database row-column cell. Complex XML documents with multilevel hierarchies and attributes
can be easily stored, queried, and updated in a native XML database.

In this chapter, we discussed general native XML database concepts in the specific context of
the Xindice open source native XML database. In addition to support for the query and update APIs,
Xindice provides a command-line tool for administrating the Xindice native XML database, which
was also discussed in this chapter.

247






CHAPTER 9

Storing XML in Relational Databases

In the previous chapter, you learned how to store an XML document in a native XML database.
Native XML databases are of course limited to storing only XML documents. If you need to store an
XML document along with other data, a relational database is more appropriate. In a relational data-
base, you can store an XML document just like any other type of data, within a column in a table row.

In the absence of standards related to storing XML content in relational databases, relational
database vendors started adding vendor-specific data types, utilities, and APIs to provide XML-related
support within their databases. Table 9-1 discusses some of the vendor-specific tools.

Table 9-1. Database Tools for Storing XML

Database Tool Database Description
Oracle XML Oracle Stores an XML document that does not
SQL Utility consist of subelements or attributes in a

predefined database table. You can apply
an XSLT to store an XML document with
subelements and attributes.

IBM DB2 DB2 UDB Stores an XML document either as a

XML Extender BLOB-like object or as a set of collection
called an XML collection.

SQL extension SQL Server 2000 Stores an XML document with a rowset

and rowset function function and retrieves an XML document

with the SQL construct FOR XML.

Result Set DTD Sybase Adaptive Server  Stores and retrieves an XML document
using a ResultSetXml class.

Clearly, a vendor-independent standard for storing and accessing XML content in relational
databases was called for, so the SQL:2003! international standard added the new Part 14: SQL/XML
(XML-Related Specifications), which is devoted to this issue.

Overview

The SQL:2003 standard provides a new XML data type for storing XML content. The XML data type is
justlike any other data type; using the XML data type, you can store an XML document within a column in

1. “SQL:2003 Has Been Published” (http://www.sigmod.org/sigmod/record/issues/0403/
E.JimAndrew-standard.pdf) is a good reference for an overview of the SQL:2003 standard.

249



250

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

a table row. SQL:2003 is a relatively new standard. Therefore, not all relational databases currently
support this standard. You may need to research vendor-specific information to find out whether
your database supports the SQL:2003 standard.

In Java, a JDBC driver is the well-established means for interacting with a relational database.
The JDBC 4.0 API specification Public Review Draft (JSR-000221) proposes support for the SQL:2003
standard. It is expected that when the JDBC 4.0 specification is finalized, more and more databases
will add support for the XML data type. In the JDBC 4.0 API, which is implemented in J2SE 6.0, the XML
data type is mapped to the java.sql.SOLXML Java data type. The key distinguishing feature of the
SOLXML Java data type is that you can use it to navigate an XML document. The JDBC 3.0 API, which
is implemented in J2SE 5.0, does not define an SQLXML data type; in JDBC 3.0, you could retrieve an
XML type column only as a String or as a CLOB. Unlike working with the java.sqgl.SOLXML type, you
cannot use a String or a CLOB to navigate an XML document.

You need a JDBC 4.0 driver to retrieve an XML document from an XML data type column and map it
to an object that implements the java.sql.SQLXML interface. Because the JDBC 4.0 specification is
still under public review, no well-known relational database currently provides a JDBC 4.0 driver.
Therefore, you can test the example application in this chapter only when a JDBC 4.0 driver becomes
available. Meanwhile, we will use JDBC 3.0 drivers to build and execute the examples.

In this chapter, we will explain how to store an XML document in a relational database, retrieve
an XML document from a database, and navigate an XML document using the java.sqgl.SQLXML
interface; navigating the document using java.sql.SOLXML will of course be feasible only with a
JDBC 4.0 driver. Listing 9-1 shows the example XML document we will use in the examples.

Listing 9-1. catalog. xml

<catalog title="OnJava.com" publisher="OReilly">
<journal date="September 2005">
<article>
<title>What Is a Portlet</title>
<author> Sunil Patil</author>
</article>
<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>
</journal>
</catalog>

Installing the Software

The SQLXML Java type, which maps the XML database type to Java, is implemented in J2SE 6.0. There-
fore, you need to install J2SE 6.0.2 Another requirement for storing an XML document in the XML type
column using the SOLXML API is a JDBC 4.0 driver. As mentioned earlier, no well-known relational data-
base currently provides a JDBC 4.0 driver. Therefore, the best you can do at this point is to develop
an application using a JDBC 3.0 driver to determine whether a database supports the XML data type.
Of course, when a JDBC 4.0 driver becomes available, you can modify this application for use with a
JDBC 4.0 driver.

You also need a relational database that supports the XML data type. Currently, only a few well-
known databases, DB2 UDB 9.1 and SQL Server 2005, support the XML data type; however, since none of
them currently supports a JDBC 4.0 driver, you won’t be able to develop an SOLXML application with any

2. For more information about J2SE 6.0 Beta, see http://java.sun.com/javase/6/download. jsp.



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

of the well-known databases. Again, for a practical example that can be executed, you have to wait until
JDBC 4.0 is finalized and JDBC 4.0 driver support is made available in commonly used databases.

With the caveats already noted, we will show how to develop an application with the open source
database MySQL3 using a JDBC 3.0 driver. Therefore, you need to download and install MySQL* 5.0.
You also need to download the MySQL JDBC driver.5 Or, if the JDBC 4.0 driver has since become
available, download and install the relevant database and corresponding JDBC 4.0 driver.

Setting Up the Eclipse Project

We will show how to develop an application (XMLToSOL. java) to store and retrieve XML datain arela-
tional database. Some of the methods of the XMLToSQL . java application are commented out and can
be run when a database with support for a JDBC 4.0 driver and the XML data type becomes available.

To compile and run the example application XMLToSQL. java, you need an Eclipse project. You
can download project Chapter9 from the Apress website (http://www.apress.com) and import it into
your Eclipse workspace by selecting File » Import.

To compile and run the XMLToSQL . java application, you need the JDBC JAR files in your project’s
Java build path; Figure 9-1 shows these JAR files for the MySQL driver. If you modify the XMLToSQL . java
application for another database, add the JDBC JAR files for the database to the Java build path. You
also need to set the JRE system library to JRE 6.0, as shown in Figure 9-1.

& Properties for Chapter9 | = |D|ﬂ

[tvpefiter text =] Java Build Path P

2 Source I = Projects B Libraries | % Order and Export I
JARs and class Folders on the build path:

---!:- mysgl-connector-java-3.1,11-bin.jar - CAMySQLYmysqgl- Add JaRs, .. |
[*-E, JRE System Library [JRE&.0]

Add External JaRs... |

Add Yariable. .. |

Add Library. .. |

Add Class Folder... |

Edit. .. |
Femayve |

1 | i

Default output Folder:

| Chapterd build Browse. .. |
[8]4 I Cancel |

Figure 9-1. Chapter9 Java build path

3. MySQL, at the time of writing this book, did not support the XML database type. If you have access to a
relational database that supports the XML database type, you can use such a database.

4. For more information about the MySQL database, see http://www.mysql.com/products/database/mysql/
community edition.html.

5. For more information about the MySQL Connector/]J driver, see http://www.mysql.com/products/connector/j/.

251



252

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Figure 9-2 shows the Chapter9 directory structure.

Ebd Chaptera
EB arc
E|EE com, apress, sqlzml

: - [J] ¥MLToSqL.java

+-=4, JRE System Library [JREG.0]

&) mysql-conneckor-java-3.1,11-bin.jar

T E— i

Figure 9-2. Chapter9 directory structure

Selecting a Database

As the String Java type is to the VARCHAR database type, the SOLXML Java type is to the XML database
type. In JDBC 4.0, the java.sql.Connection interface has a new createSQLXML() method to create an
SOLXML object. The SOLXML object thus created does not initially have any data. You can add data to
an SOLXML object using its setString(String) method or its createXMLStreamWriter () method.

You can store an SQLXML object in a database table using PreparedStatement interface’s
setSOLXML(int index, SOLXML sqlXML) method or setSQLXML(String columnName, SQLXML sqlXML)
method. You can retrieve an SQLXML object from a ResultSet or a CallableStatement object
using the getSQLXML(int index) method or the getSQLXML(String columnName) method. The
PreparedStatement and ResultSet methods for the SQLXML data type are similar to the methods for
any other data type, such as String.

To develop an application using the SQLXML API, you need a relational database that supports
the XML data type. Not all databases support the XML data type. To determine whether a database
supports the XML data type, obtain the database metadata from a Connection object. For example, to
determine whether the MySQL database supports the XML data type, load and register the com.mysql.
jdbc.Driver JDBC driver, as shown in Listing 9-2. You need a connection URL to connect to the
MySQL database. Listing 9-2 shows the connection URL for the MySQL database.

Listing 9-2. Loading a JDBC Driver

Class.forName("com.mysql.jdbc.Driver");
String url=" jdbc:mysql://localhost:3306/test ";

To obtain metadata information from the MySQL database, you first need to obtain a connection to
the database. You can create a connection to the database using the static method getConnection()
in the DriverManager interface, as shown in Listing 9-3. The user root does not require a password
by default. Subsequently, you can obtain the database metadata from this Connection object.

Listing 9-3. Retrieving Database Metadata

Connection connection = DriverManager.getConnection(url,
"root", null);
DatabaseMetaData metadata= connection.getMetaData();

You retrieve data types supported by a database from metadata using the getTypeInfo() method,
as shown in Listing 9-4. To determine whether a database supports the XML data type, iterate over the
data type result set, and output the TYPE_NAME column, as shown in Listing 9-4; the complete code for
this example is shown in Listing 9-23.



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Listing 9-4. Outputting Data Types

ResultSet rs=metadata.getTypeInfo();
System.out.println("TYPE_NAME:"+rs.getString("TYPE_NAME"));

If a database supports the XML data type, XML TYPE_NAME gets output, as shown here:

TYPE_NAME: XML

The MySQL database does not yet support the XML data type. Listing 9-5 shows the data types
output for the MySQL database. The data types may vary slightly for a different version of the MySQL
database.

Listing 9-5. The MySQL Database Data Types

TYPE_NAME : BOOL
TYPE_NAME: TINYINT
TYPE_NAME :BIGINT
TYPE_NAME : LONG VARBINARY
TYPE_NAME :MEDIUMBLOB
TYPE_NAME : LONGBLOB
TYPE_NAME:BLOB
TYPE_NAME: TINYBLOB
TYPE_NAME : VARBINARY
TYPE_NAME : BINARY
TYPE_NAME:LONG VARCHAR
TYPE_NAME :MEDIUMTEXT
TYPE_NAME : LONGTEXT
TYPE_NAME : TEXT
TYPE_NAME: TINYTEXT
TYPE_NAME : CHAR
TYPE_NAME : NUMERIC
TYPE_NAME :DECIMAL
TYPE_NAME : INTEGER
TYPE_NAME : INT
TYPE_NAME :MEDIUMINT
TYPE_NAME : SMALLINT
TYPE_NAME : FLOAT
TYPE_NAME :DOUBLE
TYPE_NAME :DOUBLE PRECISION
TYPE_NAME :REAL
TYPE_NAME : VARCHAR
TYPE_NAME : ENUM
TYPE_NAME: SET
TYPE_NAME :DATE
TYPE_NAME:TIME
TYPE_NAME :DATETIME
TYPE_NAME : TIMESTAMP

253



254

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Storing an XML Document

In this section, we will discuss how to store an XML document in a database table column of type
XML. The key steps in this procedure are as follows:

. Create an SOLXML object.
. Initialize the SOLXML object with an XML document.

1

2

3. Create a database table with a column of type XML.

4. Create a PreparedStatement to store the SQLXML object in the XML type column.
5

. Run the PreparedStatement to store the SOLXML object.

In the XMLToSQL . java application, you need to import the java.sql and javax.xml.stream packages,
where the javax.xml.stream package has the XMLStreamWriter and XMLStreamReader interfaces that
are required to work with an SQLXML object. To create an XML document to be stored in the XML type
column, first you need to create an SOLXML object. You create an SQLXML object from a Connection
object using the createSQLXML() method, as shown here:

SQLXML sqlXML=connection.createSQLXML();

An SQLXML object created using the createSQLXML () method does not contain any data. To add
data to an SQLXML object, you need to initialize this SQLXML object. You can initialize the SQLXML object
either using an XMLStreamWriter object or using the setString() method of the SQLXML interface. To
add data to an SQLXML object with an XMLStreamWriter object, create an XMLStreamWriter object from
this SQLXML object by first creating a StAXResult object and subsequently obtaining an XMLStreamWriter
object using the getXMLStreamWriter() method of the StAXResult class, as shown here:

StAXResult staxResult = sqlXML.setResult(StAXResult.class);
XMLStreamWriter xmlStreamWriter = staxResult.getXMLStreamhWriter();

You use the setResult(Class<T> resultClass) method of the SQLXML interface to create
a StAXResult object. The SOLXML object becomes unwritable when the setResult(Class<T>
resultClass) method is invoked.

An XMLStreamWriter object creates an XML document by adding elements and attributes. In an
XMLStreamhriter object, you start an XML document using the writeStartDocument (String encoding,
String version) method, as shown here:

xmlStreamWriter.writeStartDocument ("UTF-8","1.0");

Encoding specified in the writeStartDocument (String encoding, String version) method
sets the encoding in the XML declaration of the XML document under construction. The
XMLStreamhriter interface also provides the writeStartDocument () method to create an XML document
without specifying an encoding and version and provides the writeStartDocument (String version)
method to create an XML document with just the version information but no encoding.

You add the root catalog element of the example XML document using the
writeStartElement(String localName) method, as shown here:

xmlStreamWriter.writeStartElement("catalog");

You can create an element with a namespace prefix using thewriteStartElement (String prefix,
String localName, String namespaceURI) method. You can generate an empty element using the
writeEmptyElement (String localName) method.



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

You can add the attributes title and publisher to the XMLStreamWriter object using the
writeAttribute(String localName, String value) method, as shown in Listing 9-6. If an attribute
has a namespace prefix, use the method writeAttribute(String prefix, String namespaceURI,
String localName, String value).

Listing 9-6. Adding the catalog Element Attributes

xmlStreamWriter.writeAttribute("title", "ONJava.com");
xmlStreamWriter.writeAttribute("publisher”, "OReilly");

Similar to the catalog element, you can add the journal element and its date attribute as shown
in Listing 9-7. You also add the elements article and title using the writeStartElement(String)
method.

Listing 9-7. Adding the Elements journal, article, andtitle

xmlStreamWriter.writeStartElement("journal®);
xmlStreamWriter.writeAttribute("date"”, "September 2005");
xmlStreamWriter.writeStartElement("article");
xmlStreamWriter.writeStartElement("title");

You can add the title element text using the writeCharacters(String text) method, as shown
here:

xmlStreamWriter.writeCharacters("Managing XML data: Tag URIs");

You can also add text from a char[ ] array using the method writeCharacters(char[] text, int
start, int len).

You need to add an end element tag corresponding to each start element. You do this using the
writeEndElement() method, as shown here:

xmlStreamWriter.writeEndElement();

The method writeEndElement () does not specify the element local name, because the local
name is deduced implicitly. Similarly, you need to add other elements to create the example XML
document shown in Listing 9-1. Finally, you need to end the document using the writeEndDocument ()
method, as shown in Listing 9-8. You also need to close the XMLStreamWriter object.

Listing 9-8. Adding the End of the Document

xmlStreamWriter.writeEndDocument();
xmlStreamhWriter.close();

As mentioned earlier, you can also add an XML document to an SQLXML object from an XML
string using the setString(String) method of the interface SQLXML, as shown in Listing 9-9. If the
setString(String) method is invoked on an SQLXML object, on which the setString(String) method
or the createXMLStreamWriter () method has been previously invoked, a SQLException gets thrown.

Listing 9-9. Setting the XML Document As a String

sqlXML.setString("<catalog title='OnJava.com' publisher='OReilly'>
<journal date='September 2005'>

<article>

<title>What Is a Portlet</title>

<author> Sunil Patil</author>

</article>

255



256

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

<article>
<title>What Is Hibernate</title>
<author>James Elliott</author>
</article>

</journal>

</catalog>");

You can store an SQLXML object in a database table column of type XML. Therefore, you need to
create a database table with an XML type column. You can create a database table with the XML type
column either with a SQL command-line tool or with the JDBC API. To create a database table with
the JDBC AP], create a java.sql.Statement object from the Connection object, as shown in Listing 9-10.
Using the Statement object, create a database table named Catalog, with a column CatalogId of type
INT and a column Catalog of type XML, as shown in Listing 9-10.

Listing 9-10. Creating a Database Table

Statement stmt=connection.createStatement();
stmt.executeUpdate("CREATE Table Catalog(CatalogId INT, Catalog XML)");

To store an SOLXML object in a database, create a PreparedStatement object to add values to the
database table Catalog. The PreparedStatement consists of an INSERT statement with parameter
markers for the INT and SQLXML values to be added to database, as shown in Listing 9-11.

Listing 9-11. Creating a PreparedStatement

PreparedStatement statement=
connection.prepareStatement

("INSERT INTO CATALOG(catalogId, catalog)
VALUES(?,2)");

You set the INT value using the setInt(int index, int value) method, and you set the SQLXML
value using the setSQLXML (int index, SOLXML value) method of the PreparedStatement interface, as
shown in Listing 9-12. If the XMLStreamWriter object has not been closed prior to invoking the
setSQLXML () method, SQLException gets thrown. You can update the database using the
executeUpdate() method.

Listing 9-12. Setting an SOLXML Value

statement.setInt(1, 1);
statement.setSQLXML(2, sqlXML);
statement.executeUpdate();

The SQLXML objects are valid for at least the duration of the transaction in which they are
created. The JDBC 4.0 specification recommends freeing SQLXML object resources using the free()
method, as shown here:

SqQLXML.free();

JDBC 4.0 also provides update methods in the ResultSet interface to update the
SQLXML values. The update methods updateSQLXML(int columnIndex, SQLXML sqlXML) and
updateSQLXML (String columnName, SQLXML sqlXML) update values in the ResultSet object, which you
can then use to insert a new row. For example, to add a new row, obtain a Statement object that
supports an updateable ResultSet type, as shown in Listing 9-13.



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Listing 9-13. Creating a Statement Object

Statement stmt = connection.createStatement(
ResultSet.TYPE SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE);

Subsequently, obtain a ResultSet from the Catalog database table, as shown in Listing 9-14. To
add a new row, move the ResultSet cursor to the insert row. You can update the INT column value
using the updateInt() method, and you can update the SQLXML column value using the updateSQLXML()
method. A new row is not inserted until the invoke insertRow() method is called, as shown in Listing
9-14.

Listing 9-14. Adding a New Row

ResultSet rs = stmt.executeQuery("SELECT * from Catalog");
rs.moveToInsertRow();

rs.updateInt(1, 2);

rs.updateSQLXML(2, xmlObject);

rs.insertRow();

You can also update a ResultSet from the current row in a scrollable ResultSet. To update a
ResultSet from the current row in a scrollable ResultSet, move to a ResultSet row using the
absolute(int) or relative(int) method. The method absolute(int) moves the cursor to the speci-
fied row; the method relative(int) moves the cursor a specified number of rows relative to the
current row. You can update the SOLXML value in the ResultSet using an update method, and subse-
quently you can update the database row using the updateRow() method, as shown in Listing 9-15.

Listing 9-15. Updating a Row

1s.absolute(5);
rs.updateSOLXML("catalog", xmlObject);
rs.updateRow();

If an XMLStreamWriter object has not been closed prior to invoking the update methods,
SQLException gets thrown.

Retrieving an XML Document

In this section, you will retrieve an XML document from a database table column of type XML. To obtain
aResultSet object from the Catalog database table, create a PreparedStatement using a SELECT query,
as shown in Listing 9-16. The SQL statement has a parameter marker for the CatalogId value. You set
the CatalogId value using the setInt(int index, int value) method. Using the PreparedStatement
object, obtain a result set using the executeQuery() method, as shown in Listing 9-16.

Listing 9-16. Retrieving aResultSet

PreparedStatement stmt=
connection.prepareStatement

("SELECT * FROM CATALOG WHERE CatalogId=?");
stmt.setInt(1, 1);

ResultSet rs=stmt.executeQuery();

257



258

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

You can obtain the SOLXML object for the Catalog column, which is of type XML, from the
ResultSet using the getSQLXML(int index) method or the getSOLXML(String columnName) method, as
shown in Listing 9-17. You can output the XML document in an SQLXML object using the getString()
method of the SQLXML interface.

Listing 9-17. Retrieving the SOLXML Object

SQLXML sqlXML=rs.getSQLXML("Catalog");
System.out.println(sqlXML.getString());

Navigating an XML Document

Instead of outputting the XML document to a String value, you can navigate a document using an
XMLStreamReader object. The XMLStreamReader interface is a parse event generator. You need to create
an InputStream object from the SQLXML object using the getBinaryStream() method. You also need to
create an XMLInputFactory object using the static method newInstance(). From the XMLInputFactory
object you need to create an XMLStreamReader object using the createXMLStreamReader (InputStream)
method of the XMLInputFactory class, as shown in Listing 9-18.

Listing 9-18. Creating an XMLStreamReader Object

InputStream binaryStream = sqlXML.getBinaryStream();
XMLInputFactory factory = XMLInputFactory.newInstance();
XMLStreamReader xmlStreamReader = factory.createXMLStreamReader(binaryStream);

The method hasNext () determines whether parsing events are available. You obtain the next
parse event using the next () method, as shown in Listing 9-19.

Listing 9-19. Generating Parse Events

while(xmlStreamReader.hasNext()){
int parseEvent=xmlStreamReader.next();

}

The method next () returns an int value that corresponds to an XMLStreamConstants constant
and represents a parsing event. Table 9-2 lists the return values of the next () method.

Table 9-2. Method next() Return Values

Event Type Description

ATTRIBUTE Specifies an attribute

CDATA Specifies CDATA

CHARACTERS Specifies text

COMMENT Specifies an XML document comment
NOTATION DECLARATION Specifies a notation declaration
PROCESSING INSTRUCTION Specifies a processing instruction
START_DOCUMENT Specifies the start of document

START_ELEMENT Specifies the start of an element



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Table 9-2. Method next() Return Values

Event Type Description

END_ELEMENT Specifies the end of an element
ENTITY DECLARATION Specifies an entity declaration
ENTITY REFERENCE Specifies an entity reference
NAMESPACE Specifies a namespace declaration
SPACE Specifies ignorable whitespace
END_DOCUMENT Specifies the end of a document
DTD Specifies a DTD

If the return value is START_ELEMENT, the parse event indicates that an element has been parsed.
You can obtain the element local name, the prefix, and the namespace using the getLocalName(),
getPrefix(), and getNamespaceURI() methods, as shown in Listing 9-20.

Listing 9-20. Outputting the Element Values

if(parseEvent==XMLStreamConstants.START ELEMENT){
System.out.printIn("Element Local Name: "+xmlStreamReader.getlLocalName());
System.out.println("Element Prefix: "+xmlStreamReader.getPrefix());
System.out.println("Element Namespace:"+xmlStreamReader.getNamespaceURI());

}

You can obtain the attribute count in an element using the getAttributeCount() method. You can
iterate over attributes, and you can obtain the attribute local name using the getAttributelLocalName()
method, the attribute value using the getAttributeValue() method, the attribute prefix using the
getAttributePrefix() method, and the attribute namespace using the getAttributeNamespace()
method, as shown in Listing 9-21.

Listing 9-21. Outputting the Attribute Values

for(int i=0; i<xmlStreamReader.getAttributeCount();i++){
System.out.println("Attribute Prefix:"+
xmlStreamReader.getAttributePrefix(i));
System.out.println("Attribute Namespace:"+
xmlStreamReader.getAttributeNamespace(i));
System.out.println("Attribute Local Name:"+
xmlStreamReader.getAttributeLocalName(i));
System.out.println("Attribute Value:"+
xmlStreamReader.getAttributeValue(i));

If the parse event is of type CHARACTERS, you can obtain the text of the parse event using the
getText () method, as shown in Listing 9-22.

Listing 9-22. Outputting Text

if(parseEvent==XMLStreamConstants.CHARACTERS){
System.out.println("CHARACTERS text: "+xmlStreamReader.getText());
}

259



260

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

Complete Example Application

Listing 9-23 shows the complete XMLToSQL . java application. The XMLToSQL . java application has the
methods createIDBCConnection(), storeXMLDocument (), and retrieveXMLDocument (). In the method
createJDBCConnection(), you obtain a JDBC connection to a database, and the data types supported
by the database are output. If the data type XML is output in data types, the database supports the
SQL:2003 standard XML data type. Calls to the storeXMLDocument () and retrieveXMLDocument()
methods have been commented out, because none of the databases provides a JDBC 4.0 driver at the
time of publication. When a JDBC 4.0 driver becomes available, you can uncomment the methods
storeXMLDocument () and retrieveXMLDocument () and use them to store an XML document in a data-
base and retrieve an XML document from a database.

Listing 9-23. XMLToSOL. java

package com.apress.sqlxml;

import java.sql.*;

import javax.xml.stream.*;

import java.io.InputStream;

import javax.xml.transform.stax.StAXResult;

public class XMLToSQL {
Connection connection;
//Method to create a JDBC connection
public void createJDBCConnection() {
try {
//Load JDBC driver
Class.forName("com.mysql.jdbc.Driver");
//Specify connection URL
String url = "jdbc:mysql://localhost:3306/test";
//Get JDBC connection
Connection connection =
DriverManager.getConnection(url,
"root", null);
//0btain database metadata
DatabaseMetaData metadata = connection.getMetaData();
ResultSet rs = metadata.getTypeInfo();
rs.next();

while (rs.next()) {
//0utput data types
System.out.printIn("TYPE_NAME:" + rs.getString("TYPE_NAME"));
}
} catch (SQLException e) {
System.out.println(e.getMessage());
} catch (ClassNotFoundException e) {
System.out.println(e.getMessage());
}



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

//Method to store an XML document
public void storeXMLDocument() {

try {
//Create an SQLXML object
SQLXML sqlXML = connection.createSQLXML();

//Create an XMLStreamWriter
StAXResult staxResult =
sqLXML.setResult(StAXResult.class);
XMLStreamWriter xmlStreamWriter =
staxResult.getXMLStreamWriter();

//Create XML document
xmlStreamWriter.writeStartDocument ("UTF-8", "1.0");
xmlStreamWriter.writeStartElement("catalog");
xmlStreamWriter.writeAttribute("title", "ONJava.com");
xmlStreamWriter.writeAttribute("publisher”, "OReilly");

xmlStreamWriter.writeStartElement("journal");
xmlStreamWriter.writeAttribute("date"”, "September 2005");
xmlStreamWriter.writeStartElement("article");

xmlStreamWriter.writeStartElement("title");
xmlStreamWriter.writeCharacters("What Is a Portlet");
xmlStreamWriter.writeEndElement();

xmlStreamWriter.writeStartElement("author");
xmlStreamWriter.writeCharacters("Sunil Patil");
xmlStreamWriter.writeEndElement();
xmlStreamWriter.writeEndElement();
xmlStreamWriter.writeStartElement("article");
xmlStreamWriter.writeStartElement("title");
xmlStreamWriter.writeCharacters("What Is Hibernate");
xmlStreamWriter.writeEndElement();
xmlStreamWriter.writeStartElement("author");
xmlStreamWriter.writeCharacters("James Elliott");

xmlStreamWriter.writeEndElement();

xmlStreamWriter.writeEndElement();
xmlStreamWriter.writeEndElement();

xmlStreamWriter.writeEndElement();

xmlStreamWriter.writeEndDocument();
xmlStreamWriter.close();

261



262 CHAPTER 9 STORING XML IN RELATIONAL DATABASES

//Create database table
Statement stmt = connection.createStatement();
stmt.executeUpdate("CREATE Table Catalog(CatalogId int, Catalog XML)");

//Create PreparedStatement
PreparedStatement statement =
connection.prepareStatement
("INSERT INTO CATALOG(catalogld, catalog)
VALUES(?,2)");

//Set values in PreparedStatement
statement.setInt(1, 1);
statement.setSQLXML(2, sqlXML);

//Update database
statement.executeUpdate();
SqLXML.free();

} catch (SQLException e) {
} catch (XMLStreamException e) {

}

}
//Retrieve XML document

public void retrieveXMLDocument() {

try {//Create PreparedStatement
PreparedStatement stmt =
connection.prepareStatement
("SELECT * FROM CATALOG WHERE catalogId=?");
stmt.setInt(1, 1);
//0btain ResultSet
ResultSet rs = stmt.executeQuery();
//0btain SQLXML object
SOLXML sqlXML = rs.getSOLXML("catalog");
System.out.println(sqlXML.getString());
//Create XMLStreamReader object
InputStream binaryStream = sqlXML.getBinaryStream();
XMLInputFactory factory = XMLInputFactory.newInstance();
XMLStreamReader xmlStreamReader =
factory.createXMLStreamReader (binaryStream);
//Generate parse events
while (xmlStreamReader.hasNext()) {
int parseEvent = xmlStreamReader.next();
if (parseEvent == XMLStreamConstants.ATTRIBUTE) {
System.out.println("ATTRIBUTE");
System.out.println("Attribute Local Name:
+ xmlStreamReader.getAttributelLocalName(0));
System.out.println("Attribute Namespace: "
+ xmlStreamReader.getAttributeNamespace(0));
System.out.println("Attribute Prefix: "
+ xmlStreamReader.getAttributePrefix(0));
System.out.println("Attribute Value: "
+ xmlStreamReader.getAttributevValue(0));



CHAPTER 9 STORING XML IN RELATIONAL DATABASES

}
if (parseEvent == XMLStreamConstants.CDATA) {

System.out.println("CDATA");
System.out.println("Text: " + xmlStreamReader.getText());
}
if (parseEvent == XMLStreamConstants.CHARACTERS) {
System.out.println("CHARACTERS");
System.out.println("Text: " + xmlStreamReader.getText());

if (parseEvent == XMLStreamConstants.COMMENT) {
System.out.println("COMMENT");
System.out.println("Text: " + xmlStreamReader.getText());
}
if (parseEvent == XMLStreamConstants.NOTATION DECLARATION) {
System.out.printIn("NOTATION DECLARATION");
}
if (parseEvent == XMLStreamConstants.START DOCUMENT) {
System.out.printIn("START DOCUMENT");
}
if (parseEvent == XMLStreamConstants.START ELEMENT) {
System.out.println("START ELEMENT");
System.out.println("Local Name: "
+ xmlStreamReader.getLocalName());
System.out.printIn("Text: "
+ xmlStreamReader.getElementText());
System.out
.println("Prefix:
System.out.println("Namespace:
+ xmlStreamReader.getNamespaceURI());

+ xmlStreamReader.getPrefix());

}
if (parseEvent == XMLStreamConstants.END ELEMENT) {

System.out.printIn("END_ELEMENT");
System.out.println("Local Name: "
+ xmlStreamReader.getLocalName());
}

if (parseEvent == XMLStreamConstants.ENTITY DECLARATION) {
System.out.printIn("ENTITY DECLARATION");
}
if (parseEvent == XMLStreamConstants.ENTITY REFERENCE) {
System.out.printIn("ENTITY_REFERENCE");
System.out.printIn("Text: "
+ xmlStreamReader.getElementText());
}

if (parseEvent == XMLStreamConstants.NAMESPACE) {
System.out.println("NAMESPACE");
System.out.println("Prefix: "
+ xmlStreamReader.getNamespacePrefix(0));
System.out.println("NamespaceURI: "
+ xmlStreamReader.getNamespaceURI(0));

}
if (parseEvent == XMLStreamConstants.SPACE) {

System.out.println("SPACE");
System.out.printIn("Text: " + xmlStreamReader.getText());

263



264

CHAPTER 9 STORING XML IN RELATIONAL DATABASES

}
if (parseEvent == XMLStreamConstants.END DOCUMENT) {

System.out.println("END_DOCUMENT");

}
if (parseEvent == XMLStreamConstants.DTD) {

System.out.println("DTD");
}

}

SqQLXML.free();

} catch (SQLException e) {
}

}

public static void main(String[] argv) {
XMLToSQL sqlXMLApp = new XMLToSQOL();
sqLXMLApp.createIDBCConnection();

/*

* sqLXMLApp. storeXMLDocument();

* sqLXMLApp.retrieveXMLDocument();
*/

Summary

The SQL:2003 standard provides a new database data type, XML. JDBC 4.0 provides a Java data type,
SOLXML, for the database data type XML. The JDBC 4.0 API is included in the upcoming J2SE 6.0. To
store an XML document in a database table column of type XML, the database is required to support
the XML database type. At the time of writing this book, the databases DB2 UDB 9.1 and SQL Server
2005 support the XML data type. To retrieve an XML document from an XML type column using the
SQLXML Java data type, you need a JDBC 4.0 driver for the relevant database. At the time of writing this
book, the JDBC 4.0 specification is not yet finalized.

You can use the example application in this chapter when a JDBC 4.0 driver becomes available.
In this chapter, we explained the procedure to create an SQLXML object, initialize the SQLXML object,
and store the SOLXML object using the JDBC 4.0 API. We also discussed the procedure to retrieve an
SQLXML object from a ResultSet and navigate an XML document.



PART 4

DOM Level 3.0







CHAPTER 10

Loading and Saving with
the DOM Level 3 API

The DOM Level 3 Core specification, which builds upon the DOM Level 2 and Level 1 Core specifi-
cations, defines platform- and language-neutral interfaces for accessing and manipulating the
content and structure of a generalized document, represented as a document tree. In addition to the
interfaces for a generalized document, the DOM Level 3 Core specification contains specific inter-
faces for manipulating XML documents. (Chapter 2 discussed the DOM Level 3 Core specification.)

The DOM Level 3 Load and Save! specification provides a set of interfaces for loading and saving
(serializing and deserializing) an XML document. Loading an XML document means mapping the XML
document model to a DOM document model. Saving an XML document implies converting a DOM
document model to an XML document model. DOM Load and Save Level 3 is a platform- and
language-neutral specification. Beside its language- and platform-neutral status, the key features
that motivated this specification are as follows:

* The ability to filter content during the loading and saving process

* The ability to load and save selected nodes within a document, as opposed to the whole
document

* The ability to serialize a document to a string, rather than a file

* The facility for event handling during document loads and saves

The myriad reasons for filtering content, or loading and saving selected nodes, are too numerous
to enumerate, but some common reasons for filtering content, or loading and saving selected nodes,
are as follows:

* Filtering confidential information from a document, before it is communicated to a third party

* Adding or removing application-specific annotations or processing instructions to a document

* Adapting a template document for a specific purpose

In this chapter, we will discuss the DOM 3 Load and Save specification as implemented by JAXP 1.3,
which is included in J2SE 5.0. In addition to providing the loading and saving of an XML document
and the filtering of content during loading and saving, the DOM 3 Load and Save API provides event
handling as the document is loaded or serialized. In this chapter, we will cover all these features of
the DOM Level 3 Load and Save API.

1. The DOM Level 3 Load and Save specification is a W3C Recommendation available at http://www.w3.0rg/
TR/DOM-Level-3-LS/.

267



268

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

Overview

The DOM 3 Load and Save specification provides an interface for bidirectional mapping between a
DOM document model and an XML document model. The mapping is implemented by a set of
interfaces that we will discuss briefly in the following sections; we explain the interfaces in greater
detail in subsequent sections.

The DOMImplementationLS interface extends the DOM Level 3 Core DOMImplementation interface
and provides factory methods for creating objects required for loading and saving an XML docu-
ment. Using a DOMImplementationlLS object, you can create an LSParser, LSSerializer, LSInput, or
LSOutput object.

Introducing the Load API
The following are the key points of the Load API:

e LSParser is an interface to parse data into a DOM document model.

e The LSInputinterface represents a datasource. You can set a data source on an LSInput object
using a character stream, a byte stream, a string, a system ID, or a public ID. LSParser uses
an LSInput object to determine how to read data. You can set multiple input sources on
an LSParser object, and LSParser uses the first input that is not null and not an empty string.
The LSParser object scans the different input sources in the following order to select one to
read from:

a. LSInput.characterStream
b. LSInput.byteStream

¢. LSInput.stringData

d. LSInput.systemId

e. LSInput.publicId

¢ The LSResourceResolver interface resolves external resources, such as external entities, and
creates an LSInput object from an external resource.

e LSParserFilter filters nodes as data is parsed.

Introducing the Save API
The following are the key points of the Save API:
e The LSSerializer interface is for serializing (saving) a DOM document model to an XML
document model.

e The LSOutput interface represents output for serializing a DOM document model. The
LSSerializer will use an LSOutput object to determine the output destination. You can set
multiple outputs on an LSSerializer object, and LSSerializer uses the first output that is
not null and not an empty string. The LSSerializer object scans the different outputs in the
following order to determine which one to output to:

a. LSOutput.characterStream
b. LSOutput.byteStream
¢. LSOutput.systemId

e The LSSerializerFilter interface filters nodes as a DOM document model is saved.



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

Comparing JAXP’s DocumentBuilder and Transformer APIs

The DOM Level 3 Load and Save specification was influenced by earlier versions of JAXP. It turns out
that prior to the DOM Level 3 Load and Save specification, JAXP defined APIs that you can use for
serializing and deserializing an XML document. The JAXP DocumentBuilder class provides a standard
method to map an XML document to a DOM object, and the JAXP Transformer class provides a method
for serializing a DOM document model to an XML document model. Of course, JAXP is a Java-specific
APIL The DOM Level 3 Load and Save specification built upon ideas from JAXP and defined platform-
and language-neutral interfaces for loading and saving an XML document and also added features
such as event handling and filtering. And to bring things full circle, JAXP 1.3 now provides a Java
binding of the DOM Level 3 Load and Save specification.

If you don’t require the filtering, event handling, or loading and saving of selected nodes, you
can use JAXP’s DocumentBuilder and Transformer APIs for loading and saving an XML document. The
DOM 3 Load and Save specification interfaces offer the following features over and above what the
JAXP DocumentBuilder and Transformer classes offer:

e DOM Level 3 Load and Save supports the registration of an event listener with a parser. When
the loading of an XML document using the DOM 3 parser is complete, the generated load
event indicates that the document loading has completed.

* You can filter nodes as a DOM 3 parser loads them or as they are serialized.

* You can save a selected node in a DOM document model instead of the complete document.

* You can save a Document node or an Element node as a java.lang.String object, instead of a
file. Exchanging XML documents in a web service sometimes requires an XML document as a
String type.

In this chapter, we will explain the procedure to load and save an XML document using the
DOM Level 3 specification. We will demonstrate how to filter content at load time and at serializa-
tion time using the DOM Level 3 Load and Save specification. This chapter uses the DOM Level 3
Load and Save implementation provided by JAXP 1.3, which is included in J2SE 5.0.

Creating an Eclipse Project

The DOM Level 3 specification is implemented in several API distributions such as Xerce2-j and
JAXP 1.3. In this chapter, you will use the JAXP 1.3 API distribution included in J2SE 5.0. You will
use JAXP 1.3, because JAXP 1.3 is a Java Specification Requests (JSR) specification. Before you can set
up your project, you need to download Xerces? version 2.7.1 and extract the zip file to an installation
directory. The Xerces2-7j.zip fileis required, because an implementation class in the xercesImpl.jar
file is required to set a DOMImplementationRegistry property. You also need to download and install
J2SE version 5.0, which includes the JAXP 1.3 implementation of the DOM Level 3 Load and Save
specification.

To compile and run the code examples, you need an Eclipse project. You can download project
Chapter10 from the Apress website (http://www.apress.com) and import it into your Eclipse workspace.

To compile and run your DOM Level 3 Load and Save code examples, you need a Xerces2-J JAR
file in your project’s Java build path; Figure 10-1 shows the JAR files. The JAR file required fora DOM 3
Load and Save application is xercesImpl.jar, which consists of the Xerces implementation API. You
also need to set the JRE system library to JRE 5.0, as shown in Figure 10-1.

2. For more information about Xerces2-j, see http://xerces.apache.org/xerces2-j/.

269



270

CHAPTER 10

LOADING AND SAVING WITH THE DOM LEVEL 3 API

& Properties for Chapter10

I bype filker bext VI

avadoc Location

Java Build Path =]

N=TE

o &

2 Source I = Projects B Libraries | % Order and Export I
JARs and class Folders on the build path:

,;*. xercesImpl.jar - Ciiverces2-Nixerces-2_7_1

[+, JRE System Library [JRES.0]

roject References

Add JARs... |
Add External JaRs... |
Add Yariable. .. |
Add Library. .. |
Add Class Folder. .. |

Edit. .. |
Femave |

Defaulk output Folder:

Chapter10/build

Browse. .. |

o1

Cancel |

Figure 10-1. Chapter10 project Java build path

Figure 10-2 shows the Chapter10 project directory structure.

Hierarchy

B8 com.apress.domls

- [F] DOM3Buider.java

- [J] DOMIFilker java

[ [J] DOM3Writer java

2, JRE System Library [JRES.0]

| xercesImpl.jar - Ciixerces2-Tixerces-2_7_1
catalog.xml

catalog.xsd

Figure 10-2. Chapter10 project directory structure

Loading an XML Document

Let’s first look at how to load an XML document. You use the interfaces and classes in the org.w3c.
dom.1s package to load, save, and filter an XML document. You use the LSParser interface in this
package to load an XML document, parse an XML document, and obtain a Document object. The
procedure to load an XML document is as follows:

1. Set the system property DOMImplementationRegistry.PROPERTY.

2. Create a DOMImplementationRegistry object.




CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API 2n

Create a DOMImplementationLS object.

Create an LSParser object.

Create a DOMConfiguration object.

Create an error handler class, and set the error-handler parameter.

Set the validate, schema-type, validate-if-schema, and schema-location parameters.

® N o o @

Parse the XML document.

Listing 10-1 shows the example document loaded, catalog.xml.

Listing 10-1. catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog title="dev2dev">
<journal date="May 2005">
<article section="WeblLogic Server">
<title>Session Management for Clustered Applications</title>
<author> Jon Purdy</author>
</article>
</journal>

<journal date="April 2005">
<article section="WebLogic Platform">
<title>Integrating WebLogic Platform 8.1 with the
Stellent Web Content Management System</title>
<author>Munish Gandhi</author>
</article>
</journal>
</catalog>

You can also validate the document that is loaded by an LSParser object with an XML Schema.
Listing 10-2 shows the example XML Schema, catalog.xsd, with which the example XML document
is validated.

Listing 10-2. catalog.xsd

<?xml version="1.0" encoding="utf-8"?>
<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="catalog">
<xs:complexType>
<Xs:sequence>
<xs:element ref="journal" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="title" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="journal">
<xs:complexType>
<Xs:sequence>
<xs:element ref="article" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>



272 CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

<xs:attribute name="date" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="article">
<xs:complexType>
<Xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element ref="author" minOccurs="0"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="section" type="xs:string"/>
</xs:complexType>
</xs:element>
<xs:element name="author" type="xs:string"/>
</xs:schema>

The following code is the standard way in which to retrieve a DOM implementation, which you
can then use to parse an XML document. As you will see, most of the code is simply used to initialize
registries and properties so as to extract the final parser. To parse an XML document, first you need
to import the org.w3c.dom.1s package. Next, you need to set the
DOMImplementationRegistry.PROPERTY system property, as shown here:

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");

A DOMImplementationRegistry is a factory that enables applications to obtain instances of a
DOMImplementation. To obtain a DOMImplementation, first create a DOMImplementationRegistry object
using the static method newInstance(). Subsequently, obtain a DOMImplementation instance from the
DOMImplementationRegistry object, as shown in Listing 10-3.

Listing 10-3. Creating a DOMImplementation

DOMImplementationRegistry registry =DOMImplementationRegistry.newInstance();
DOMImplementation domImpl = registry.getDOMImplementation("LS 3.0");

Specifying LS 3.0 in the features list ensures that the DOMImplementation object implements
the Load and Save features of the DOM 3.0 specification. Some of the other features that may be
included are XML 1.0 Traversal and Events 2.0. You need to cast the DOMImplementation object to
DOMImplementationLS, which provides methods to create an LSParser. The LSParser interface loads
an XML document. Therefore, create an LSParser instance from the DOMImplementationLS type
object, as shown in Listing 10-4.

Listing 10-4. Creating an LSParser

DOMImplementationLS implLS = (DOMImplementationLS)domImpl;

LSParser parser =

implLS.createlLSParser(DOMImplementationLS.MODE_SYNCHRONOUS,
"http://www.w3.0rg/2001/XMLSchema");

You can set the mode of parsing to MODE_SYNCHRONOUS or MODE_ASYNCHRONOUS. If the mode is
MODE_SYNCHRONOUS, the parse() and parseURI() methods of the LSParser object return an org.w3c.
dom.Document object. If the mode is MODE_ASYNCHRONOUS, the parse() and parseURI() methods return
null. The schemaType, http://www.w3.0rg/2001/XMLSchema, specifies the type of schema used to
load an XML document. To set the configuration parameters of an LSParser object, obtain a
DOMConfiguration object from LSParser, as shown here:



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API 273

DOMConfiguration config=parser.getDomConfig();

To set the error-handler parameter of the DOMConfiguration, you need to create a class that
implements the DOMErrorHandler interface. Listing 10-5 shows a DOMErrorHandler implementation class.

Listing 10-5. Error Handler Class

private class DOMErrorHandlerImpl implements DOMErrorHandler{
public boolean handleError (DOMError error){
System.out.println("Error Message:"+error.getMessage());
if(error.getSeverity()==DOMError.SEVERITY_WARNING)
return true;
else
return false;

To add error handling to the LSParser object, create an instance of the DOMErrorHandlerImpl
class, and set the error-handler parameter of the DOMConfiguration object, as shown in Listing 10-6.

Listing 10-6. Setting Error Handling

DOMErrorHandlerImpl errorHandler=new DOMErrorHandlerImpl();
config.setParameter("error-handler", errorHandler);

You can configure an LSParser object to be a schema-validating parser by setting the validate,
schema-type, validate-if-schema, and schema-location parameters, as shown in Listing 10-7.

Listing 10-7. Setting the Schema Validation

config.setParameter("validate" , Boolean.TRUE);
config.setParameter("schema-type" , "http://www.w3.0rg/2001/XMLSchema");
config.setParameter("validate-if-schema" , Boolean.TRUE);
config.setParameter("schema-location" ,"catalog.xsd");

Finally, parse the XML document using the LSParser, as shown here:
Document document = parser.parseURI("catalog.xml");

If the XML document schema validation has any errors, the error handler specified with the
error-handler parameter registers the errors. Having loaded the XML document, you can update
the XML document using the DOM Level 3 Core API. Previous to the DOM Level 3 Load and Save
specification, XML document loading varied with the parser used to load and parse an XML docu-
ment. With the DOM Level 3 specification, the loading and saving mechanism is standardized.

The JAXP 1.3 implementation of the DOM 3 Load and Save specification has a limitation: the
org.w3c.dom. 1s package does not provide an implementation class for the LSParser interface that
also implements the EventTarget interface. Without an implementation class for the LSParser inter-
face that also implements the EventTarget interface, event handling is not feasible without creating
a custom class that implements the LSParser interface and the EventTarget interface. Because we
are not using a custom class that implements the LSParser interface, we have not included event
handling in the example application.

Listing 10-8 shows the application DOM3Builder. java, which loads an XML document. The
application consists of a method loadDocument () that loads an XML document. In the loadDocument ()
method, first set the system property for DOMImplementationRegistry, and subsequently create
aDOMImplementationRegistry object. From the DOMImplementationRegistry object, create a
DOMImplementation object, and cast the DOMImplementation object to DOMImplementationlS. From



274 CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

the DOMImplementationlLS object, create an LSParser object. From the LSParser object, obtain a
DOMConfiguration object, and set the error-handler parameter on the DOMConfiguration object.
Also, set the schema validation parameters on the DOMConfiguration object. The example XML docu-
ment is parsed using the parseURI() method.

Listing 10-8. DOM3Builder. java

package com.apress.dom3ls;
import org.w3c.dom.*;

import org.w3c.dom.bootstrap.*;
import org.w3c.dom.ls.*;

public class DOM3Builder {
//Method to load an XML document
public void loadDocument() {
try {
//Setting system property for DOMImplementationRegistry
System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");

//Creating a DOMImplementationRegistry
DOMImplementationRegistry registry = DOMImplementationRegistry
.newInstance();

//Creating a DOMImplementation object
DOMImplementation domImpl = registry.getDOMImplementation("LS 3.0");

//Casting DOMImplementation to DOMImplementationLS
DOMImplementationLS implLS = (DOMImplementationLS) domImpl;

//Creating an LSParser object

LSParser parser = impllLS.createlSParser(
DOMImplementationLS.MODE_SYNCHRONOUS,
"http://www.w3.0rg/2001/XMLSchema");

//Obtaining a DOMConfiguration object
DOMConfiguration config = parser.getDomConfig();

//Setting the error handler
DOMErrorHandlerImpl errorHandler = new DOMErrorHandlerImpl();
config.setParameter("error-handler", errorHandler);

//Setting schema validation parameters

config.setParameter("validate", Boolean.TRUE);

config.setParameter("schema-type",
"http://www.w3.0rg/2001/XMLSchema");

config.setParameter("validate-if-schema", Boolean.TRUE);
config.setParameter("schema-location", "catalog.xsd");
//Parsing an XML document
Document document = parser.parseURI("catalog.xml");
System.out.println("XML document loaded");



}
}

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

catch (DOMException e) {
System.out.println("DOMException
catch (ClassNotFoundException e) {
System.out.println("ClassNotFoundException
catch (InstantiationException e) {
System.out.println("InstantiationException
catch (IllegalAccessException e) {
System.out.println("IllegalAccessException

+ e.getMessage());

+ e.getMessage());

'+ e.getMessage());

+ e.getMessage());

public static void main(String[] args) {
DOM3Builder dom3Builder = new DOM3Builder();
dom3Builder.loadDocument();

}

//Exrror handler class

private class DOMErrorHandlerImpl implements DOMErrorHandler {
public boolean handleError(DOMError error) {

}
}
}

Run the DOM3Builder. java application in Eclipse with the procedure explained in Chapter 1.
The output from the application indicates the XML document has been loaded, as shown in Listing 10-9.

System.out.println("Error Message:" + error.getMessage());

if (error.getSeverity() == DOMError.SEVERITY_WARNING) {
return true;

} else {
return false;

}

Listing 10-9. Output from DOM3Builder. java

XML document loaded

Saving an XML Document

Let’s now look at saving a DOM document model as an XML document model. With the DOM Level 3
AP], you can save an XML document to an XML file or a String. The DOM Level 3 API has the added
feature of being able to serialize only a selected node in a DOM document model. You use the
LSSerializer interface to save a DOM document model to an XML document model. The procedure

to save an XML document is as follows:

N o o & w2

Create an XML document to save.

Set the system property DOMImplementationRegistry.PROPERTY.
Create a DOMImplementationRegistry object.

Create a DOMImplementationLsS object.

Create an LSSerializer object.

Create an LSOutput object.

Output the XML document.

275



276

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

The following code is the standard way in which to retrieve a DOM implementation, which you
can then use to save an XML document. As earlier in the chapter, import the org.w3c.dom.1s package.

We will demonstrate the LSSerializer interface by creating an XML document, adding elements
and attributes to the XML document, and serializing the XML document. As earlier in the chapter,
set the system property DOMImplementationRegistry.PROPERTY, as shown here:

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");

To create an LSSerializer object, you need to create a DOMImplementationRegistry object.
You create a DOMImplementationRegistry object using the static method newInstance(). Subsequently,
create a DOMImplementation object from the registry, and cast the DOMImplementation instance to
DOMImplementationLS. From the DOMImplementationLS object, create an LSSerializer object, as
shown in Listing 10-10.

Listing 10-10. Creating an LSSerializer Object

DOMImplementationRegistry registry =DOMImplementationRegistry.newInstance();
DOMImplementation domImpl =registry.getDOMImplementation("LS 3.0");
DOMImplementationLS implLS = (DOMImplementationLS)domImpl;

LSSerializer dom3Writer = implLS.createlSSerializer();

To output the XML document generated, create an LSOutput object. You need to set an
OutputStream, to which an XML document is output, on the LSOutput object. Also, you can specify an
output encoding. You can output an XML document using the write(Node, LSOutput) method, as
shown in Listing 10-11.

Listing 10-11. Outpuiting an XML Document

LSOutput output=implLS.createlSOutput();
output.setByteStream(System.out);
output.setEncoding("UTF-8");
dom3Writer.write(document,output);

The DOM Level 3 specification has a feature to output a selected node in a DOM document
model instead of the complete document. For example, say you need to save the journal element node.
To output the journal node, specify the journal node as an argument to the write(Node, LSOutput)
method, as shown in Listing 10-12.

Listing 10-12. Outputting the journal Node

output.setByteStream(System.out);
dom3Writer.write(journal,output);

With the DOM Level 3 AP, you can output a DOM document model to a String. Simply use the
writeToString(Node) method, as shown here:

String nodeString = dom3Writer.writeToString(journal);

Listing 10-13 shows DOM3Writer.java, which is a Java class used to output an XML document.
The application DOM3Writer. java consists of a method saveDocument (). In the saveDocument () method,
create an XML document to save. Set the DOMImplementationRegistry system property, and create a
DOMImplementationRegistry object. Create a DOMImplementation object, and cast to DOMImplementationLsS.
Create an LSSerializer object from the DOMImplementationLS object. Using an LSOutput object, output
the XML document to System.out. You can also output a selected node in the DOM document model
instead of the complete document. You can output a DOM document model to a String instead of
afile.



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

Listing 10-13. DOM3Writer. java

package com.apress.dom3ls;

import org.w3c.dom.*;

import org.w3c.dom.bootstrap.DOMImplementationRegistry;
import org.w3c.dom.ls.*;

import javax.xml.parsers.*;

public class DOM3Writer {

//Method to save an XML document
public void saveDocument() {

try { //Create an XML Document
DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.newDocument();
Element catalog = document.createElement("catalog");

catalog.setAttribute("publisher", "IBM developerWorks");
document.appendChild(catalog);

Element journal = document.createElement("journal");
journal.setAttribute("edition", "October 2005");
journal.setAttribute("section", "XML");
catalog.appendChild(journal);

Element article = document.createElement("article");
journal.appendChild(article);

Element title = document.createElement("title");

title.appendChild(document.createTextNode("JAXP Validation"));
article.appendChild(title);

Element author = document.createElement("author");

author.appendChild(document.createTextNode("Brett McLaughlin"));
article.appendChild(author);
//Set system property for DOMImplementationRegistry

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");
//Create a DOMImplementationRegistry object
DOMImplementationRegistry registry = DOMImplementationRegistry
.newInstance();

277



278

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

//Create a DOMImplementation object
DOMImplementation domImpl = registry.getDOMImplementation("LS 3.0");

DOMImplementationLS implLS = (DOMImplementationLS) domImpl;
//Create an LSSerializer object
LSSerializer dom3Writer = impllLS.createlSSerializer();
//Create an LSOutput object
LSOutput output = implLS.createlSOutput();

System.out.println("Outputting XML Document");
output.setByteStream(System.out);

output.setEncoding("UTF-8");
//0Output the XML document
dom3Writer.write(document, output);

System.out.printIn("\n\n"+"Outputting the journal Node"+"\n");
//0utput a node
dom3Writer.write(journal, output);
//0utput a node to String
String nodeString = dom3Writer.writeToString(journal);

} catch (ParserConfigurationException e) {
} catch (ClassNotFoundException e) {
} catch (InstantiationException e) {
} catch (IllegalAccessException e) {

}
}

public static void main(String[] argv) {

DOM3Writer dom3Writer = new DOM3Writer();
dom3Writer.saveDocument();

}
}

You can run the DOM3Writer. java application in Eclipse with the procedure explained in
Chapter 1. Listing 10-14 shows the output from the application.

Listing 10-14. Output in Eclipse from the DOM3Writer. java Application

Outputting XML Document

<?xml version="1.0" encoding="UTF-8"?>

<catalog publisher="IBM developerWorks"><journal edition="October 2005" section=
"XML"><article><title>JAXP Validation</title><author>Brett McLaughlin</author></
article></journal></catalog>

Outputting the journal Node
<?xml version="1.0" encoding="UTF-8"?>

<journal edition="October 2005" section="XML"><article><title>JAXP Validation</t
itle><author>Brett McLaughlin</author></article></journal>



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

Filtering an XML Document

You can filter an XML document model as the XML document model is parsed, and you can filter a
DOM document model as the DOM document model is stored. In this section, we will show how to
filter an XML document model. We will show how to filter an input XML document model using an
input filter and save the parsed DOM document model using an output filter. In filtering a document
model, you can remove some of the nodes from the document. The LSParserFilter interface allows
the filtering of input, while the LSSerializerFilter interface allows the filtering of output. For our
example, the procedure to filter input is as follows:

1. Create an input filter, a class that implements the LSParserFilter interface.

2. In the input filter class, show the element nodes to filter. Nodes that are not shown to the
filter are added to the Document object without the filter selecting the nodes to add to the
Document object.

. Accept all the nodes that are shown to the filter.
. Create an LSParser object.

3
4
5. Create an LSInput object for the XML document to filter.
6. Set the input filter on the LSParser object.

7

. Parse an XML document using the LSInput object.
For our example, the procedure to filter the output is as follows:

1. Create an output filter, a class that implements the LSSerializerFilter interface.

2. In the output filter class, show the element nodes to filter. Nodes that are not shown to the
filter are output without the filter selecting the nodes to output.

3. Asanexample, accept all the nodes that are shown to the filter except the journal node with
the date attribute set to April 2005.

4. Create an LSSerializer object.

5. Create an LSOutput object for the filter output.
6. Set the output filter on the LSSerializer object.
7

. Filter the Document object.

As when loading and saving, import the DOM 3 org.w3c.dom. 1s package. For input filtering,
create an LSParser implementation and an LSParser parser, as shown in Listing 10-15. The procedure
to create a filter is same as in the loading section: create a DOMImplementationRegistry object, obtaina
DOMImplementation object from the registry object, cast DOMImplementation to DOMImplementationLS, and
create an LSParser from the DOMImplementationlS object.

Listing 10-15. Creating an LSParser

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");
DOMImplementationRegistry registry =DOMImplementationRegistry.newInstance();
DOMImplementation domImpl = registry.getDOMImplementation("LS 3.0");
DOMImplementationLS implLS = (DOMImplementationLS)domImpl;
LSParser parser =
implLS.createLSParser(DOMImplementationLS.MODE_SYNCHRONOUS,
"http://www.w3.0rg/2001/XMLSchema");

279



280

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

In the loading section, an XML document was parsed from a URI. In this section, we will show
how to parse the example XML document from an LSInput object. Therefore, create an LSInput
object, and set an InputStream for the LSInput, as shown in Listing 10-16.

Listing 10-16. Creating an LSInput Object

LSInput input = impl.createlSInput();
InputStream inputStream = new FileInputStream(new File("catalog.xml"));
input.setByteStream(inputStream);

You need to create an input filter for input filtering. In the input filter, you will print the Element
nodes as they are parsed without filtering any nodes. An input filter is required to implement the
LSParserFilter interface. Therefore, define a filter class that implements the LSParserFilter interface
and implements the acceptNode(), startElement(), and getWhatToShow() methods of the
LSParserFilter interface. The acceptNode () method returns a short that indicates whether a
node is to be accepted, rejected, or skipped. Table 10-1 lists the values that can be returned by the
acceptNode() method.

Table 10-1. Return Values for the acceptNode() Method

Return Value Description

FILTER ACCEPT Accepts the node

FILTER _INTERRUPT Interrupts document filtering
FILTER REJECT Rejects the node
FILTER_SKIP Skips the node

If a node is accepted using FILTER_ACCEPT, the node is included in the Document object returned
by a parser. If a node is skipped using FILTER_SKIP, only the specified node is skipped; the children
ofthe node are parsed and included in the DOM document. If a node is rejected using FILTER_REJECT, the
node and its children are rejected. The startElement () method specifies whether an Element node is
to be accepted, rejected, or skipped. Table 10-1 also lists the return values of the startElement()
method. Only an Element and the Element’s attributes are input to the startElement() method. You
can use the startElement() method to modify attributes of an element. The differences between the
acceptNode() method and the startElement () method are as follows:

¢ OnlyElement nodes are input to the startElement () method as compared to the acceptNode ()
method in which all nodes except the Document, DocumentType, Notation, Entity,
DocumentFragment, and Attribute nodes may be input to the method. Attribute nodes may
be input to the acceptNode() method of the LSSerializerFilter interface.

¢ The element node input to startElement () will include all the Element’s attributes but none
of the children nodes. Nodes input to the acceptNode () method of LSParserFilter include all
the children nodes but none of the attribute nodes. Nodes input to the acceptNode() method
of LSSerializerFilter include all the children nodes and may include the attribute nodes.

The getWhatToShow() method specifies nodes that are input to the LSParserFilter.acceptNode()
method. Table 10-2 shows the return values of the getWhatToShow() method. Nodes that are not
input to the acceptNode () method of a filter are included in the DOM document model being built
without filtering. Nodes that are input to the acceptNode () method of a filter are accepted, skipped,
or rejected as specified in the method.



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API 281

Table 10-2. Return Values for the getWhatToShow() Method

Return Value Description

NodeFilter.SHOW ALL Shows all nodes
NodeFilter.SHOW_ELEMENT Shows Element nodes
NodeFilter.SHOW_TEXT Shows Text nodes

NodeFilter.SHOW COMMENT Shows Comment nodes

NodeFilter.SHOW PROCESSING INSTRUCTION Shows ProcessingInstruction nodes
NodeFilter.SHOW CDATA SECTION Shows CDATASection section nodes
NodeFilter.SHOW_ENTITY_REFERENCE Shows EntityReference nodes

In the example input filter class, InputFilter, the filtering application shows element nodes
to the acceptNode () method. Therefore, specify the return type of the getWhatToShow() method
as NodeFilter.SHOW ELEMENT. The return type of the acceptNode() and startElement() methods is
LSParser.FILTER_ACCEPT. Listing 10-17 shows the input filter class.

Listing 10-17. InputFilter Class

private class InputFilter implements LSParserFilter {
public short acceptNode(Node node) {
return NodeFilter.FILTER ACCEPT;

}

public int getWhatToShow() {
return NodeFilter.SHOW_ELEMENT;

}

public short startElement(Element element) {
System.out.println("Element Parsed " + element.getTagName());
return NodeFilter.FILTER _ACCEPT;

}

The example input filter inputs only Element nodes to the filter’s acceptNode() method; other
nodes are included in the DOM document model without filtering. The acceptNode () method of the
filter accepts all nodes that are input. The startElement() method prints element nodes as element
nodes are parsed and accepts all element nodes that are parsed. To set filtering on input, create an
instance of the InputFilter class, and set the filter on the LSParser, as shown in Listing 10-18. Subse-
quently, parse the example XML document using the parse(LSInput) method of the LSParser interface.

Listing 10-18. Filtering Input

InputFilter inputFilter=new InputFilter();
parser.setFilter(inputFilter);
Document document=parser.parse(input);

Next, we will demonstrate output filtering. For output filtering, create an output filter. As an
example, we will filter a journal node from Document using an output filter. An output filter class is
required to implement the LSSerializerFilter interface. Therefore, create an output filter class,



282

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

OutputFilter, thatimplements the LSSerializerFilter interface. In addition to returning the values
listed in Table 10-2, the getWhatToShow() method of the LSSerializerFilter interface may also return
SHOW_ATTRIBUTE. In the example, the OutputFilter class specifies the return type of the getWhatToShow()
method as NodeFilter.SHOW_ELEMENT and the return type of the acceptNode () method as FILTER_ACCEPT
for journal nodes other than the journal node with the date attribute April 2005. In the example
output filter, only element nodes are input to the filter’s acceptNode () method, and the acceptNode ()
method accepts all nodes except the journal node with the date April 2005. Listing 10-19 shows the
output filter class OutputFilter.

Listing 10-19. Output Filter Class

private class OutputFilter implements LSSerializerFilter {
public short acceptNode(Node node) {
Element element = (Element) node;

if (element.getTagName().equals("journal™)) {
if (element.getAttribute("date").equals("April 2005")) {
return NodeFilter .FILTER REJECT;
}
}

return NodeFilter.FILTER ACCEPT;
}

public int getWhatToShow() {
return NodeFilter.SHOW ELEMENT;

}

To set filtering on the LSSerializer object, create an instance of OutputFilter, and set the filter
on the LSSerializer, as shown in Listing 10-20.

Listing 10-20. Setting Filtering on LSSerializer

LSSerializer domWriter = impl.createlSSerializer();
OutputFilter outputFilter = new OutputFilter();
domWriter.setFilter(outputFilter);

To output a filtered XML document, create an LSOutput object, and set an OutputStream for the
LSOutput object. Then output the filtered XML document using the write(Node, LSOutput) method,
as shown in Listing 10-21.

Listing 10-21. Outputting Filtered XML Document

LSOutput 1sOutput = impl.createlSOutput();
1sOutput.setByteStream(System.out);
domWriter.write( document, lsOutput);

Listing 10-22 lists DOM3Filter. java, the Java class used to filter an XML document. The filtering
application consists of a method filter() to filter input from an XML document and output to an
XML document. DOM3Filter. java also defines the filter classes InputFilter and OutputFilter for
input filtering and output filtering. You can filter the input by setting an InputFilter object on an
LSParser object and subsequently parsing an XML document. You can filter the output by setting an
OutputFilter object on an LSSerializer object and subsequently serializing an XML document.



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

Listing 10-22. DOM3Filter. java

package com.apress.dom3ls;

import org.w3c.dom.*;

import org.w3c.dom.bootstrap.DOMImplementationRegistry;
import org.w3c.dom.ls.*;

import org.w3c.dom.traversal.*;

import java.io.*;

public class DOM3Filter {

// Method to filter an input document and an output document.

public void filter() {

try {
//Set DOMImplementationRegistry object

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMImplementationSourceImpl");

//Create a DOMImplementationRegistry object
DOMImplementationRegistry registry =
DOMImplementationRegistry.newInstance();

//Create a DOMImplementation object
DOMImplementation domImpl =
registry.getDOMImplementation("XML 3.0");

//Create a DOMImplementationLS object

DOMImplementationLS impl = (DOMImplementationLS) domImpl;

//Create an LSParser object
LSParser parser = impl.createlSParser(
DOMImplementationLS.MODE_SYNCHRONOUS, null);

//Filter Input
LSInput input = impl.createlSInput();
InputStream inputStream =

new FileInputStream(new File("catalog.xml"));
input.setByteStream(inputStream);

InputFilter inputFilter = new InputFilter();
parser.setFilter(inputFilter);

Document document = parser.parse(input);

//Create an LSSerializer object

LSSerializer domWriter = impl.createlSSerializer();

//Set an output filter
OutputFilter outputFilter = new OutputFilter();
domWriter.setFilter(outputFilter);

283



284

CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

LSOutput 1sOutput = impl.createlLSOutput();

1sOutput.setByteStream(System.out);
System.out.println("\n"+"Filtered Document"+"\n");

//Filter output
domWriter.write(document, 1sOutput);
} catch (IOException e) {
System.err.println(e);
catch (ClassNotFoundException e) {
catch (InstantiationException e) {
catch (IllegalAccessException e) {

e

}

public static void main(String[] args) {
DOM3Filter dom3Filter = new DOM3Filter();
dom3Filter.filter();
}
//Input filter class
private class InputFilter implements LSParserFilter {
public short acceptNode(Node node) {
return NodeFilter.FILTER_ACCEPT;
}

public int getWhatToShow() {
return NodeFilter.SHOW_ELEMENT;
}

public short startElement(Element element) {
System.out.println("Element Parsed " + element.getTagName());

return NodeFilter.FILTER ACCEPT;
}
}
//0utput filter class
private class OutputFilter implements LSSerializerFilter {
public short acceptNode(Node node) {
Element element = (Element) node;

if (element.getTagName().equals("journal")) {
if (element.getAttribute("date").equals("April 2005")) {
return NodeFilter.FILTER REJECT;
}
}

return NodeFilter.FILTER_ACCEPT;
}

public int getWhatToShow() {
return NodeFilter.SHOW_ELEMENT;
}

}
}



CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

You can run the filtering application in Eclipse with the procedure explained in Chapter 1. An
input filter lists elements as they are parsed. An output filter filters a journal node from the XML
document. Listing 10-23 shows the output from the output filter.

Listing 10-23. Output in Eclipse from the DOM3Filter. java Application

Element Parsed journal
Element Parsed article
Element Parsed title

Element Parsed author
Element Parsed journal
Element Parsed article
Element Parsed title

Element Parsed author

Filtered Document

<?xml version="1.0" encoding="UTF-8"?>
<catalog title="dev2dev">
<journal date="May 2005">
<article section="WeblLogic Server">
<title>Session Management for Clustered Applications</title>
<author> Jon Purdy</author>
</article>
</journal>

</catalog>

As illustrated in the output, the journal node with date="April 2005" has been removed from
the XML document.

Summary

The DOM Level 3 specification provides a set of interfaces for the following:

* Loading and saving an XML document

* Filtering content during XML document loads and saves

* Saving selected nodes within a document, as opposed to the whole document

* Serializing a complete document, or selected document nodes, to a string, as opposed to a file
The DOM Level 3 Load and Save interfaces offer some advantages over the JAXP DocumentBuilder

and Transformer classes. The DOM Level 3 Load and Save features that are not included in the JAXP
DocumentBuilder and Transformer classes are as follows:

e Event handling during document loads and saves
* Filtering content during document loads and saves
¢ Loading and saving selected nodes, instead of the complete document

» Saving Document object to a String, as opposed to a file

285



286 CHAPTER 10 LOADING AND SAVING WITH THE DOM LEVEL 3 API

In this chapter, we offered code examples to illustrate the DOM Level 3 Load and Save interfaces,
specifically, loading an XML document (with schema validation), saving an XML document or a
selected node to a file or a string, and filtering content during the loading and saving process. All

code examples are based on the DOM Level Load and Save implementation within JAXP 1.3, which
is included in J2SE 5.0.



PART 5

Utilities







CHAPTER 11

Converting XML to Spreadsheet,
and Vice Versa

Often itis useful for XML data to be presented as a spreadsheet. A typical spreadsheet (for example,
a Microsoft Excel spreadsheet) consists of cells represented in a grid of rows and columns, containing
textual data, numeric data, or formulas. An Excel spreadsheet defines some standard functions such
as SUM and AVERAGE that you can specify in cells. The Apache Jakarta POI project provides the HSSF
API to create an Excel spreadsheet from an XML document or to go the opposite way, parsing an
Excel spreadsheet and converting to XML. The HSSF API has provisions for setting the layout, border
settings, and fonts of an Excel document. In this chapter, you’ll learn how to generate an example
Excel spreadsheet by parsing an XML document and adding data from the XML document to a
spreadsheet. Subsequently, you'll convert the Excel spreadsheet to an XML document.

Overview

The Jakarta POI HSSF API provides classes to create an Excel workbook and add spreadsheets to the
workbook. With the POI API, the HSSFWorkbook class represents a workbook, and you set the spread-
sheet fonts, sheet order, and cell styles in the HSSFWorkbook class. You can represent the spreadsheet
using the HSSFSheet class. Specifically, you set the sheet layout, including the column widths, margins,
header, footer, and print setup using the HSSFSheet class. You can represent a spreadsheet row using
the HSSFRow class, and you set the row height using the HSSFRow class. The HSSFCell class represents
acellin a spreadsheet row, and you set the cell style using the HSSFCell class. The indexing of spread-
sheets in a workbook, of rows in a spreadsheet, and of cells in a row is zero based. In this chapter,
we’ll show how to convert an example XML document to an Excel spreadsheet and then convert the
spreadsheet to an XML document. Listing 11-1 shows the example document, incomestatements.xml.

Listing 11-1. incomestatements.xml

<?xml version="1.0" encoding="UTF-8"?>
<incmstmts>

<stmt>

<year>2005</year>

<revenue>11837</revenue>
<costofrevenue>2239</costofrevenue>
<researchdevelopment>1591</researchdevelopment>
<salesmarketing>2689</salesmarketing>
<generaladmin>661</generaladmin>
<totaloperexpenses>7180</totaloperexpenses>

289



290

CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

<operincome>4657</operincome>
<invincome>480</invincome>
<incbeforetaxes»5137</incbeforetaxes>
<taxes>1484</taxes>
<netincome>3653</netincome>

</stmt>

<stmt>

<year>2004</year>

<revenue>10818</revenue>
<costofrevenue>1875¢</costofrevenue>
<researchdevelopment>1421</researchdevelopment>
<salesmarketing>2122</salesmarketing>
<generaladmin>651</generaladmin>
<totaloperexpenses>6069</totaloperexpenses>
<operincome>4749</operincome>
<invincome>420</invincome>
<incbeforetaxes>5169</incbeforetaxes>
<taxes>1706</taxes>
<netincome>3463</netincome>

</stmt>

<incmstmts>

Creating an Eclipse Project

In this chapter, we’ll show how to create and parse an Excel spreadsheet using the Apache POI HSSF
API. Before you can set up your project, you need to download Apache POI! 2.5.1 and extract the zip
file to an installation directory. You also need to download and install JDK 5.0. (You can also use
another version of JDK such as 1.4 or 6.0.)

To compile and run the code examples, you will need an Eclipse project. You can download
project Chapter11 from the Apress website (http://www.apress.com) and import it into your Eclipse
workspace by selecting File » Import.

To compile and run the Apache POI code examples, you need some JAR files in your project’s
Java build path; Figure 11-1 shows these JAR files. The JAR file required for an Apache POI applica-
tionis poi-2.5.1-final-20040804. jar, which consists of the Apache POI API. You also need to set
the JRE system library to JRE 5.0, as shown in Figure 11-1.

Figure 11-2 shows the Chapter11 project directory structure.

If you haven’t got a copy of Excel handy, you can instead open the Excel spreadsheet generated
from the example XML document using Excel Viewer.2

1. For more information about Apache POI, see http://jakarta.apache.org/poi/.
2. For more information about Excel Viewer, see http://www.microsoft.com/downloads/
details.aspx?FamilyID=c8378bf4-996c-4569-b547-75edbdo3aafoddisplaylang=EN.



CHAPTER 11

& Properties for Chapter11

|tvpe filker bext 'l Jawva Build Path

CONVERTING XML TO SPREADSHEET, AND VICE VERSA

N=TE

R

Euild Path

2 Source I = Projects B Libraries | % Order and Export I
JARs and class Folders on the build path:

Java Code Style%
Java Compiler

Project References

§. poi-2.5.1-final-20040804 . jar - C:\ApachePOl
Javadoc Location [+, JRE System Library [JRES.0]

Add JARs... |
Add External JaRs... |
Add Yariable. .. |
Add Library. .. |
Add Class Folder... |

Edit. .. |
Femayve |

Default output Folder:

Chapter11/build

Browse. .. |

o]

Cancel |

Figure 11-1. Chapter11 Java build path

E|B} oM, apress. excel

m ExcelToxML java

m ¥MLToExcel java

=, JRE System Library [JRES.0]

;ﬁ poi-2.5.1-final-20040804 . jar - C:\ApachePOl
D incomestatemnents. xml

Figure 11-2. Chapter11 directory structure

Converting an XML Document to

an Excel Spreadsheet

In this section, we will show how to convert the example XML document in Listing 11-1 to an Excel
document using the Apache POI HSSF API. Specifically, you will parse the example XML document,
retrieve values from the document, and construct an Excel spreadsheet. The procedure to create a

spreadsheet is as follows:

291



292 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

Create an Excel spreadsheet workbook and an empty spreadsheet.
Define a cell style.

Set the spreadsheet column width.

Add a header row to the spreadsheet.

Parse the XML document.

Add statement columns to the spreadsheet.

N o e ~ o b=

Output the spreadsheet.

You need to import the Apache POI HSSF package, org.apache.poi.hssf.usermodel.
You can create an Excel workbook using a no-arguments constructor for HSSFWorkbook, as shown
in Listing 11-2. You create a spreadsheet, represented with the HSSFSheet class, by using the
createSheet(String sheetName) method of the HSSFWorkbook class.

Listing 11-2. Creating an Excel Workbook and Spreadsheet

HSSFWorkbook wb=new HSSFWorkbook();
HSSFSheet spreadSheet=wb.createSheet("spreadSheet");

You canrepresent a cell in a spreadsheet using the HSSFCell class. You set the cell style using the
HSSFCellStyle class. To set the cell style in the example spreadsheet being generated, create a cell
style object using the createCellStyle() method of the HSSFWorkbook class, as shown in Listing 11-3.
The example cell style defines a cell border and is used for cells that represent totals for a column or
subcolumn. You can set the border settings for an HSSFCellStyle object using the setter methods
setBorderTop(short), setBorderLeft(short), setBorderBottom(short), and setBorderRight(short).

Listing 11-3. Setting the Cell Style

HSSFCellStyle cellStyle=wb.createCellStyle();
cellStyle.setBorderRight (HSSFCellStyle.BORDER_MEDIUM);
cellStyle.setBorderTop(HSSFCellStyle.BORDER _MEDIUM);
cellStyle.setBorderLeft(HSSFCellStyle.BORDER_MEDIUM);
cellStyle.setBorderBottom(HSSFCellStyle.BORDER_MEDIUM);

You can represent a border type with a short value, as shown in Listing 11-3. Table 11-1 lists
some of the commonly used types of borders.

Table 11-1. Border Types

Short Description
BORDER_DASH DOT Dash-dot border
BORDER_DASHED Dashed border
BORDER_DOUBLE Double-line border
BORDER_MEDIUM Medium border
BORDER_NONE No border
BORDER_THICK Thick border

BORDER_THIN Thin border




CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

You can set the border color using the setter methods setBottomBorderColor(short color),
setleftBorderColor(short color), setRightBorderColor(short color), and
setTopBorderColor(short color).You can represent spreadsheet color using the HSSFColor
subclasses. For example, the class HSSFColor.BLUE represents the color blue. You can obtain a short
value corresponding to a color using the field index. The following is an example of setting a color:

short blue= HSSFColor.BLUE.index;
cellStyle.setRightBorderColor(blue);

You can set background color and foreground color using the methods
setFillBackgroundColor (short fg) and setFillForegroundColor(short bg).You can set text
indentation using the setIndention(short indent) method. You can wrap cell text using the
setWrapText(boolean wrapped) method. For example, you can set cell-style indentation to 4 and
add text wrapping, as shown here:

cellStyle.setIndention((short)4);
cellStyle.setWrapText(true);

Further, you can add text rotation to cell text using the setRotation(short rotation) method.
You specify rotation in degrees using values from —-90 to +90. You can horizontally align cell text
using the setAlignment(short) method. You represent cell alignment using a short value. Some of
the commonly used cell alignment types are ALIGN_CENTER, ALIGN_RIGHT, ALIGN_LEFT, and ALIGN FILL.
You can set vertical alignment using the setVerticalAlignment(short align) method. Vertical
alignment short values are VERTICAL_TOP, VERTICAL_CENTER, VERTICAL_BOTTOM, and VERTICAL_JUSTIFY.
You define the spreadsheet font using the HSSFFont class. Listing 11-4 shows an example of creating
an italicized font using font height 24 and font name Courier New. As shown in the listing, a font is
created using the method createFont() of the HSSFWorkbook class.

Listing 11-4. Setting the Font

HSSFFont font = wb.createFont();
font.setFontHeightInPoints((short)24);
font.setFontName("Courier New");
font.setItalic(true);
cellStyle.setFont(font);

A row in the spreadsheet created from the example XML document has cells corresponding to
each of the elements in the stmt tag of the example XML document. You set the column width in a
spreadsheet at column level using the HSSFSheet method setColumnWidth(short column, short width).
For example, you specify the column width of the first column of a spreadsheet as shown here:

spreadSheet.setColumnWidth((short)o, (short)(256%*25));

A spreadsheet has a header row that specifies headers for the columns in the spreadsheet.
Therefore, add a header row to the HSSFSheet class. A header row is just like any other row and is
created using the createRow(int rowNumber) method, as shown in Listing 11-5.

You add column headers to the header row using the createCell(short) method, as shown in
Listing 11-5. You set the cell value using the setCellValue(String) method. For example, add a
column header for the Year 2005 column.

Listing 11-5. Adding the Spreadsheet Header Row

HSSFRow row = spreadSheet.createRow(0);
HSSFCell cell = row.createCell((short) 0);
cell.setCellValue("Year 2005");

293



294

CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

You can add the column header for the Year 2004 column similarly. You need to parse the
example XML document using a DocumentBuilder to navigate an XML document and retrieve the
values from the document. (Chapter 2 discussed the procedure to parse an XML document.) You
need to create a DocumentBuilderFactory from which you will create a DocumentBuilder parser, as
shown in Listing 11-6. Subsequently, parse the example XML document, and obtain a Document object.

Listing 11-6. Parsing an XML Document

DocumentBuilderFactory factory =DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse(xmlDocument);

You can obtain a node list that consists of stmt nodes from the Document object using the
getElementsByTagName(String) method as shown in Listing 11-7. Each stmt node represents a column
in a spreadsheet. The subelements in an stmt element represent the row values for a column. In the
spreadsheet, add 11 rows corresponding to the subelements of an stmt element. For example, the
following code shows how to add row 1:

HSSFRow rowl = spreadSheet.createRow(1);

To construct a spreadsheet, iterate over the node list, and add a column to the spreadsheet
corresponding to each of the stmt nodes in the node list, as shown in Listing 11-7. You add a spread-
sheet column using the HSSFRow object. The node list of stmt elements has two nodes corresponding
to the two stmt elements in the example XML document. Using a switch statement, you'll add row
labels and row values for two columns. For example, to add a row labeled Revenue, create arow label,
and create row cells for the two nodes in the stmt element node list, as shown in Listing 11-7. A column
consists of cells corresponding to each of the elements in the stmt element. You create a cell using
the createCell(short) method of the HSSFRow object, as shown in Listing 11-7. You set the cell value
using the setCellValue(String) method.

Listing 11-7. Constructing a Spreadsheet

NodelList nodelist = document.getElementsByTagName("stmt");
for (int i = 0; i < nodelist.getlength(); i++) {

switch(i){

case 0:

HSSFCell cell = rowl.createCell((short) 0);
cell.setCellvalue("Revenue ($)");

cell = rowl.createCell((short) 1);

cell.setCellvValue(((Element)
(nodelist.item(0))).
getElementsByTagName
("revenue").item(0).getFirstChild()
.getNodeValue());

break;
case 1:



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

HSSFCell cell = rowl.createCell((short) 2);
cell.setCellValue(((Element)
(nodeList.item(1))).
getElementsByTagName("revenue").
item(0).getFirstChild().getNodeValue());
break;

}
}

The first cell in a row has index 0. Earlier in the section, you defined a cell style. The cell style is
set at the cell level using the setCellStyle() method of the HSSFCell object, as shown here:

cell.setCellStyle(cellStyle);

Similarly, you need to set row values for other cells in a column. HSSFSheet provides some
methods to set different characteristics of a spreadsheet. Table 11-2 discusses some of these methods.

Table 11-2. HSSFSheet Methods

Method Name Description

setColumnBreak(short column) Sets a page break at the specified column

setDefaultColumnWidth(short width) Sets the default column width, if the width is not
specified at the column level

setDefaultRowHeight (short height) Sets the default row height, if the height is not
specified at the row level

setFitToPage(boolean b) Sets it to fit to the page

setHorizontallyCenter(boolean value) Sets the output to be horizontally centered

setMargin(short margin,double size) Sets the style sheet margin

setRowBreak(int row) Sets a page break at the specified row

setZoom(int numerator, int denominator) Sets the zoom magnification for the style sheet

To output the Excel workbook to an .x1s file, create a FileOutputStream object, as shown in
Listing 11-8. You can output the Excel workbook using the write (HSSFWorkbook) method, and you
can close the FileOutputStream object using the close() method.

Listing 11-8. Outputting the Excel Workbook

FileOutputStream output=new FileOutputStream(new File("IncomeStatements.x1s"));
wb.write(output);

output.flush();

output.close();

Listing 11-9 shows the Java application, XMLToExcel. java, used to convert an XML document to
an Excel spreadsheet. The application consists of a method generateExcel(File) that generates an
Excel spreadsheet from an XML document. In the generateExcel () method, an Excel workbook is
created and a spreadsheet is added to the workbook. The cell style is added using an HSSFCellStyle
object. An XML document is parsed, and the stmt element node list is iterated over to retrieve node

295



296 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

values. A spreadsheet column is added corresponding to each of the stmt nodes in the example XML
document. A column header value is set from the year element in an stmt element. A spreadsheet
row is added corresponding to each of the subelements in an stmt element. A switch statement is used to
set row values for a column. Subsequently, the Excel workbook is output using a FileOutputStream.

Listing 11-9. XMLToExcel. java

package com.apress.excel;

import org.apache.poi.hssf.usermodel.*;

import org.w3c.dom.*;

import java.io.*;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.xml.sax.SAXException;

public class XMLToExcel {
public void generateExcel(File xmlDocument) {
try {// Creating a Workbook
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet spreadSheet = wb.createSheet("spreadSheet");

spreadSheet.setColumnWidth((short) 0, (short) (256 * 25));

spreadSheet.setColumnWidth((short) 1, (short) (256 * 25));

// Parsing XML Document

DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.parse(xmlDocument);

NodeList nodelList = document.getElementsByTagName("stmt");

// Creating Rows

HSSFRow row = spreadSheet.createRow(0);

HSSFCell cell = row.createCell((short) 1);
cell.setCellvalue("Year 2005");

cell = row.createCell((short) 2);
cell.setCellValue("Year 2004");

HSSFRow rowl = spreadSheet.createRow(1);
HSSFRow row2 = spreadSheet.createRow(2);
HSSFRow row3 = spreadSheet.createRow(3);
HSSFRow row4 = spreadSheet.createRow(4);
HSSFRow row5 = spreadSheet.createRow(5);
HSSFRow row6 = spreadSheet.createRow(6);
HSSFRow row7 = spreadSheet.createRow(7);
HSSFRow row8 = spreadSheet.createRow(8);
HSSFRow row9 = spreadSheet.createRow(9);
HSSFRow row10 = spreadSheet.createRow(10);
HSSFRow rowll = spreadSheet.createRow(11);

for (int i = 0; i < nodelist.getlength(); i++) {



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

HSSFCellStyle cellStyle = wb.createCellStyle();
cellStyle.setBorderRight(HSSFCellStyle.BORDER_MEDIUM);
cellStyle.setBorderTop(HSSFCellStyle.BORDER_MEDIUM);
cellStyle.setBorderLeft(HSSFCellStyle.BORDER_MEDIUM);
cellStyle.setBorderBottom(HSSFCellStyle.BORDER MEDIUM);

switch (1) {
// Creating columnl (Row label) and column 2 (Year 2005 stmt)
case O:

cell = rowl.createCell((short) 0);
cell.setCellValue("Revenue ($)");

cell = rowl.createCell((short) 1);
cell.setCellValue(((Element) (nodelList.item(0)))
.getElementsByTagName("revenue").item(0)

.getFirstChild().getNodeValue());

cell = row2.createCell((short) 0);
cell.setCellValue("Cost of Revenue ($)");

cell = row2.createCell((short) 1);

cell.setCellValue(((Element) (nodelList.item(0)))
.getElementsByTagName("costofrevenue").item(0)
.getFirstChild().getNodeValue());

cell = row3.createCell((short) 0);
cell.setCellvalue("Research and Development ($)");

cell = row3.createCell((short) 1);

cell.setCellValue(((Element) (nodelList.item(0)))
.getElementsByTagName("researchdevelopment™)
.item(0).getFirstChild().getNodeValue());

cell = row4.createCell((short) 0);
cell.setCellvalue("Sales and Marketing ($)");

cell = row4.createCell((short) 1);

cell.setCellValue(((Element) (nodelList.item(0)))
.getElementsByTagName("salesmarketing").item(0)
.getFirstChild().getNodeValue());

cell = row5.createCell((short) 0);
cell.setCellValue("General and Administrative ($)");

cell = rows.createCell((short) 1);

cell.setCellValue(((Element) (nodelList.item(0)))
.getElementsByTagName("generaladmin").item(0)
.getFirstChild().getNodeValue());

cell = row6.createCell((short) 0);
cell.setCellvalue("Total Operating Expenses ($)");
cell.setCellStyle(cellStyle);

297



298 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

cell
cell.

= rowb.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("totaloperexpenses”).item(0)
.getFirstChild().getNodeValue());

cell.

cell
cell.

cell
cell.

setCellStyle(cellStyle);

= row7.createCell((short) 0);
setCellValue("Operating Income ($)");

= row7.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("operincome").item(0)
.getFirstChild().getNodeValue());

cell
cell.

cell
cell.

= row8.createCell((short) 0);
setCellValue("Investment Income ($)");

= row8.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("invincome").item(0)
.getFirstChild().getNodeValue());

cell
cell.
cell.

cell
cell.

= row9.createCell((short) 0);
setCellValue("Income Before Taxes ($)");
setCellStyle(cellStyle);

= row9.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("incbeforetaxes").item(0)
.getFirstChild().getNodeValue());

cell.

cell
cell.

cell
cell.

setCellStyle(cellStyle);

= rowl0.createCell((short) 0);
setCellValue("Taxes ($)");

= rowl0.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("taxes").item(0)
.getFirstChild().getNodeValue());

cell
cell.
cell.

cell
cell.

= rowll.createCell((short) 0);
setCellValue("Net Income ($)");
setCellStyle(cellStyle);

= rowll.createCell((short) 1);
setCellValue(((Element) (nodelList.item(0)))

.getElementsByTagName("netincome").item(0)
.getFirstChild().getNodeValue());

cell.

setCellStyle(cellStyle);

break;



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

// Creating column 3 (Year 2004 stmt)

case 1:

cell
cell.

= rowl.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("revenue").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row2.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("costofrevenue").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row3.createCell((short) 2);
setCellValue(((Element) (nodelList.item(1)))

.getElementsByTagName("researchdevelopment™)
.item(0).getFirstChild().getNodeValue());

cell
cell.

= row4.createCell((short) 2);
setCellValue(((Element) (nodelList.item(1)))

.getElementsByTagName("salesmarketing").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row5.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("generaladmin").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row6.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("totaloperexpenses”).item(0)
.getFirstChild().getNodeValue());

cell.

cell
cell.

setCellStyle(cellStyle);

= row7.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("operincome").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row8.createCell((short) 2);
setCellValue(((Element) (nodelist.item(1)))

.getElementsByTagName("invincome").item(0)
.getFirstChild().getNodeValue());

cell
cell.

= row9.createCell((short) 2);
setCellValue(((Element) (nodelList.item(1)))

.getElementsByTagName("incbeforetaxes").item(0)
.getFirstChild().getNodeValue());

cell.

setCellStyle(cellStyle);

299



300 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

cell = row10.createCell((short) 2);

cell.setCellvValue(((Element) (nodelist.item(1)))
.getElementsByTagName("taxes").item(0)
.getFirstChild().getNodeValue());

cell = rowil.createCell((short) 2);

cell.setCellValue(((Element) (nodelList.item(1)))
.getElementsByTagName("netincome").item(0)
.getFirstChild().getNodeValue());

cell.setCellStyle(cellStyle);

break;

default:
break;

}

}

// Outputting to Excel spreadsheet

FileOutputStream output = new FileOutputStream(new File(
"IncomeStatements.x1s"));

wb.write(output);

output.flush();

output.close();

} catch (IOException e) {

System.out.println("IOException " + e.getMessage());
} catch (ParserConfigurationException e) {

System.out

.println("ParserConfigurationException " + e.getMessage());

} catch (SAXException e) {

System.out.println("SAXException " + e.getMessage());
}

}

public static void main(String[] argv) {
File xmlDocument = new File("incomestatements.xml");

XMLToExcel excel = new XMLToExcel();
excel.generateExcel(xmlDocument);
}
}

You can run the XMLToExcel. java application in Eclipse as explained in Chapter 1. This generates an
Excel spreadsheet. IncomeStatements.xls, the example spreadsheet generated from the example
XML document, gets added to the Chapter11 project, as shown in Figure 11-3.

Figure 11-4 shows the Excel spreadsheet generated with the Apache POI HSSF API.



Hierarchy Fﬂ@ﬁm =g

CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

6%~

-8 com.apress.excel

=, JRE System Library [JRES.0]

| poi-2.5,1-final-20040804.jar - C:\ApachePOl
p:l_l] IncomeStatements., xls

- [5] incomestatements. xml

ExcelToxML java
D ¥MLToExcel java

Figure 11-3. The Excel spreadsheet IncomeStatements.x1s in the Chapteri1 project

'_EJ Microsoft Excel ¥iewer - IncomeStatements dglﬂ
IZH File Edit Yiew ‘Window Help dﬂ ﬂ
A B L& 1 0 I E IF
1 Year 2005 Year 2004 [
| 2 |Revenue () 11837 10818
| 3 |Cost of Revenue (§) 2239 1875
| 4 |Research and Development (§1591 1421
| & |Sales and Marketing (%) 2689 2122
B |General and Administrative (§661 G451
7 |Total Operating Expenses ($)[7180 |5065 |
| 8 |Operating Incame (§) 4657 4749
9 |Investment Income () 430 420
10 [Incomne Before Taxes (5] [5137 st
11 |Taxes () 1484 1706
12 [Met Incame (§) |3853 3453 |
| 13 |
| 14 |
15 g
| 16 |
| 17 |
18 Sl
M 4 » M|\ spreadSheet [4] | L”J
Ready MM A

Figure 11-4. IncomeStatements.x1s spreadsheet

Converting an Excel Spreadsheet to an
XML Document

In the previous section, you learned how to generate an Excel document from an XML document. In
this section, you'll convert the Excel document to an XML document. The procedure to generate an
XML document from a spreadsheet is as follows:

Create an empty XML document using DocumentBuilder.

1
2. Add top-level stmt elements.
3.
4
5

Create an HSSFSheet object from the Excel file.

. Iterate over the spreadsheet, and add subelements to the XML document.

Output the XML document using the Transformer APL

301



302

CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

You can use the Apache POI HSSF API to parse an Excel spreadsheet and retrieve cell values
from the spreadsheet. As in the previous section, first you need to import the Apache POI package
org.apache.poi.hssf.usermodel.

The root element of the XML document (Listing 11-1) that you will generate is incmstmts, and
you’ll add an stmt element corresponding to each of the columns of the Excel spreadsheet. There-
fore, generate an XML document using a DocumentBuilder object as shown in Listing 11-10, and add
the root element of the document. You can obtain the DocumentBuilder object from a
DocumentBuilderFactory object, as shown in Listing 11-10.

Listing 11-10. Creating an XML Document

DocumentBuilderFactory factory =DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

Document document = builder.newDocument();

Element rootElement=document.createElement("incmstmts");
document.appendChild(rootElement);

You can read the XLS spreadsheet that is to be converted to an XML document using an
InputStream, as shown in Listing 11-11. Subsequently, obtain a workbook from the InputStream
object, and obtain the spreadsheet in the Excel workbook.

Listing 11-11. Obtaining Spreadsheet

InputStream input=new FileInputStream(new File("IncomeStatements.x1s") );
HSSFWorkbook workbook=new HSSFWorkbook(input);
HSSFSheet spreadsheet=workbook.getSheetAt(0);

To construct an XML document, add an stmt element for each of the columns in the spread-
sheet. You also need to add an element, year, corresponding to the column header, to each of the
stmt elements, as shown in Listing 11-12.

Listing 11-12. Adding stmt Elements

Element stmtElementl = document.createElement("stmt");
rootElement.appendChild(stmtElement1);

Element yearl = document.createElement("year");
stmtElement1.appendChild(year1);
yearl.appendChild(document.createTextNode("2005"));

To add subelements to stmt elements, iterate over spreadsheet rows and, using a switch state-
ment, retrieve row cell values; use these row cell values to create the subelements. Because the first
row(corresponding to index 0)) is a header row, iterate from the second row. For example, to add
arevenue element, retrieve the second spreadsheet row, which corresponds to index 1, using the
getRow(int) method of the HSSFSheet class. You can retrieve a row cell value using the HSSFRow method
getCell(short) and arow cell value using the method getStringCellValue(), as shown in Listing 11-13.
You can obtain the number of rows in a spreadsheet using the HSSFSheet class method getlLastRowNum().

Listing 11-13. Adding Elements to the XML Document

for (int i = 1; i <= spreadsheet.getlLastRowNum(); i++) {
switch (1) {
case 1:
HSSFRow rowl = spreadsheet.getRow(1);
Element revenueElementl =
document.createElement("revenue");



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

stmtElement1.appendChild(revenueElement1);
revenueElement1.appendChild
(document.createTextNode
(rowl.getCell((short)1).
getStringCellValue()));
Element revenueElement2 = document.createElement("revenue");
stmtElement2.appendChild(revenueElement2);
revenueElement2.appendChild
(document.createTextNode
(rowl.getCell((short) 2).
getStringCellvalue()));

break;

}

Similarly, other cell values are retrieved from the spreadsheet and specified in the XML docu-
ment. You can generate the XML document using the Transformer API. You obtain a Transformer
object from a TransformerFactory object, as shown in Listing 11-14. You can output the XML document
using the transform(DOMSource, StreamResult) method with a DOMSource object as input and a
StreamResult object as output, as shown in Listing 11-14.

Listing 11-14. Outpuiting an XML Document

TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer();

DOMSource source = new DOMSource(document);

StreamResult result = new StreamResult(new File(System.out));
transformer.transform(source, result);

Listing 11-15 shows the Java application, ExcelToXML. java, used to convert an Excel spread-
sheet to an XML document. The application consists of a method generateXML(File excelFile) that
converts a spreadsheet to an XML document. An XML document is created using a DocumentBuilder
object. A spreadsheet is parsed, and an XML document element, stmt, is added corresponding to
each of the columns in the spreadsheet. Elements are added to the stmt element that corresponds to
the rows in a column. The XML document is output using the Transformer API.

Listing 11-15. ExcelToXML. java

package com.apress.excel;

import org.apache.poi.hssf.usermodel.*;
import org.w3c.dom.*;

import java.io.*;

import javax.xml.parsers.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

303



304 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

public class ExcelToXML {
public void generateXML(File excelFile) {
try { //Initializing the XML document
DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.newDocument();
Element rootElement = document.createElement("incmstmts");
document.appendChild(rootElement);
//Creating top-level elements
Element stmtElement1l = document.createElement("stmt");
rootElement.appendChild(stmtElement1);

Element stmtElement2 = document.createElement("stmt");
rootElement.appendChild(stmtElement2);

//Adding first subelements
Element yearl = document.createElement("year");
stmtElement1.appendChild(year1);

yearl.appendChild(document.createTextNode("2005"));

Element year2 = document.createElement("year");
stmtElement2.appendChild(year2);
year2.appendChild(document.createTextNode("2004"));
//Creating an HSSFSpreadsheet object from an Excel file
InputStream input = new FileInputStream(excelFile);
HSSFWorkbook workbook = new HSSFWorkbook(input);
HSSFSheet spreadsheet = workbook.getSheetAt(0);

for (int i = 1; i <= spreadsheet.getlLastRowNum(); i++) {
switch (1) {
//Iterate over spreadsheet rows to create stmt element
//subelements.
case 1:
HSSFRow rowl = spreadsheet.getRow(1);

Element revenueElementl = document.createElement("revenue");
stmtElement1.appendChild(revenueElement1);

revenueElement1.appendChild
(document.createTextNode
(rowl.getCell((short) 1).

getStringCellvalue()));

Element revenueElement2 = document.createElement("revenue");
stmtElement2.appendChild(revenueElement2);

revenueElement2.appendChild
(document.createTextNode
(rowl.getCell((short) 2).
getStringCellvalue()));



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

break;
case 2:
HSSFRow row2 = spreadsheet.getRow(2);

Element costofrevenuel = document
.createElement("costofrevenue");
stmtElement1.appendChild(costofrevenuel);
costofrevenuel.appendChild
(document.createTextNode

(row2.getCell((short)1).
getStringCellvalue()));

Element costofrevenue2 = document.createElement("costofrevenue");
stmtElement2.appendChild(costofrevenue2);

costofrevenue2.appendChild
(document.createTextNode
(row2.getCell((short) 2).
getStringCellvalue()));
break;
case 3:

HSSFRow row3 = spreadsheet.getRow(3);

Element researchdevelopmentl = document.createElement("researchdevelopment”);
stmtElement1.appendChild(researchdevelopment1);

researchdevelopment1.appendChild

(document.createTextNode

(row3.getCell((short) 1)
.getStringCellvalue()));

Element researchdevelopment2 =
document.createElement ("researchdevelopment");
stmtElement2.appendChild(researchdevelopment2);

researchdevelopment2.appendChild
(document.createTextNode
(row3.getCell((short) 2).
getStringCellvalue()));
break;
case 4:

HSSFRow row4 = spreadsheet.getRow(4);

Element salesmarketingl = document
.createElement("salesmarketing");
stmtElement1.appendChild(salesmarketing1);

salesmarketingl.appendChild(document.createTextNode(row4
.getCell((short) 1).getStringCellvalue()));

Element salesmarketing2 = document
.createElement("salesmarketing");
stmtElement2.appendChild(salesmarketing2);

305



306 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

salesmarketing2.appendChild(document.createTextNode(row4
.getCell((short) 2).getStringCellvalue()));
break;
case 5:
HSSFRow row5 = spreadsheet.getRow(5);

Element generaladmini = document
.createElement("generaladmin");
stmtElement1.appendChild(generaladmini);

generaladmini.appendChild(document.createTextNode(row5
.getCell((short) 1).getStringCellvalue()));

Element generaladmin2 = document
.createElement("generaladmin");
stmtElement2.appendChild(generaladmin2);

generaladmin2.appendChild(document.createTextNode (row5
.getCell((short) 2).getStringCellValue()));
break;
case 6:
HSSFRow row6 = spreadsheet.getRow(6);

Element totaloperexpensesl = document
.createklement("totaloperexpenses");
stmtElement1.appendChild(totaloperexpensesi);

totaloperexpensesi.appendChild(document.createTextNode(row6
.getCell((short) 1).getStringCellvalue()));

Element totaloperexpenses2 = document
.createElement("totaloperexpenses");
stmtElement2.appendChild(totaloperexpenses2);

totaloperexpenses2.appendChild(document.createTextNode(row6
.getCell((short) 2).getStringCellvalue()));
break;
case 7:
HSSFRow row7 = spreadsheet.getRow(7);

Element operincomel = document.createElement("operincome");
stmtElement1.appendChild(operincomel);

operincomel.appendChild(document.createTextNode(row7
.getCell((short) 1).getStringCellvalue()));

Element operincome2 = document.createElement("operincome");
stmtElement2.appendChild(operincome2);

operincome2.appendChild
(document.createTextNode
(row7.getCell((short) 2).
getStringCellvalue()));
break;



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

case 8:
HSSFRow row8 = spreadsheet.getRow(8);

Element invincomel = document.createElement("invincome");
stmtElement1.appendChild(invincomel);

invincome1.appendChild
(document.createTextNode
(row8.getCell((short) 1).
getStringCellValue()));

Element invincome2 = document.createElement("invincome");
stmtElement2.appendChild(invincome2);

invincome2.appendChild
(document.createTextNode
(row8.getCell((short) 2).
getStringCellValue()));
break;

case 9:
HSSFRow Tow9 = spreadsheet.getRow(9);

Element incbeforetaxesl = document
.createElement("incbeforetaxes");
stmtElement1.appendChild(incbeforetaxesi);

incbeforetaxes1.appendChild
(document.createTextNode
(row9.getCell((short) 1).
getStringCellValue()));

Element incbeforetaxes2 =
document.createElement("incbeforetaxes");
stmtElement2.appendChild(incbeforetaxes2);

incbeforetaxes2.appendChild
(document.createTextNode
(rowg.getCell((short)2).
getStringCellvalue()));
break;

case 10:
HSSFRow Towl0 = spreadsheet.getRow(10);

Element taxes1 = document.createElement("taxes");
stmtElement1.appendChild(taxes1);

taxes1.appendChild(document.createTextNode(row10.getCell(
(short) 1).getStringCellvalue()));

Element taxes2 = document.createElement("taxes");
stmtElement2.appendChild(taxes2);

307



308 CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA

taxes2.appendChild(document.createTextNode(row10.getCell(
(short) 2).getStringCellValue()));
break;

case 11:
HSSFRow rowll = spreadsheet.getRow(11);

Element netincomel = document.createElement("netincome");
stmtElement1.appendChild(netincomel);

netincomel.appendChild(document.createTextNode(rowl1l
.getCell((short) 1).getStringCellvalue()));

Element netincome2 = document.createElement("netincome");
stmtElement2.appendChild(netincome2);

netincome2.appendChild(document.createTextNode(rowll
.getCell((short) 2).getStringCellvalue()));
break;

default:
break;

}
}

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer = tFactory.newTransformer();
//Add indentation to output
transformer.setOutputProperty
(OutputKeys.INDENT, "yes");
transformer.setOutputProperty(
"{http://xml.apache.org/xslt}indent-amount", "2");

DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);
} catch (IOException e) {
System.out.println("IOException " + e.getMessage());
} catch (ParserConfigurationException e) {
System.out
.println("ParserConfigurationException " + e.getMessage());
} catch (TransformerConfigurationException e) {
System.out.println("TransformerConfigurationException
+ e.getMessage());
} catch (TransformerException e) {
System.out.println("TransformerException

+ e.getMessage());



CHAPTER 11 CONVERTING XML TO SPREADSHEET, AND VICE VERSA 309

public static void main(String[] argv) {
ExcelToXML excel = new ExcelToXML();
File input = new File("IncomeStatements.x1s");
excel.generateXML(input);
}
}

You can run the application ExcelToXML. java in Eclipse with the procedure explained in
Chapter 1. Listing 11-16 shows the output from the ExcelToXML. java application.

Listing 11-16. Output from ExcelToXML. java

<?xml version="1.0" encoding="UTF-8"?>
<incmstmts>

<stmt>

<year>2005</year>

<revenue>11837</revenue>
<costofrevenue»2239</costofrevenue>
<researchdevelopment>1591</researchdevelopment>
<salesmarketing>2689</salesmarketing>
<generaladmin>661</generaladmin>
<totaloperexpenses>7180</totaloperexpenses>
<operincome>4657</operincome>
<invincome>480</invincome>
<incbeforetaxes>5137</incbeforetaxes>
<taxes>1484</taxes>
<netincome>3653</netincome>

</stmt>

<stmt>

<year>2004</year>

<revenue>10818</revenue>
<costofrevenue>1875</costofrevenue>
<researchdevelopment>1421</researchdevelopment>
<salesmarketing>2122</salesmarketing>
<generaladmin>651</generaladmin>
<totaloperexpenses>6069</totaloperexpenses>
<operincome>4749</operincome>
<invincome>420</invincome>
<incbeforetaxes>5169</incbeforetaxes>
<taxes>1706</taxes>
<netincome>3463</netincome>

</stmt>

</incmstmts>

Summary

The Apache POI API provides a useful mechanism for converting data between XML and spreadsheets.
In this chapter, you learned how to convert an example XML document to an Excel spreadsheet and
then convert the spreadsheet to an XML document. With XML being a universal format, there really
is no limit to what you can do with it!






CHAPTER 12

Converting XML to PDF

In the previous chapter, we discussed the procedure to convert an XML document to a Microsoft
Excel spreadsheet. In this chapter, we will show how to convert an XML document to a PDF document.
The open source Apache Formatting Objects Processor (FOP) project provides an API to convert an
XML document to PDF or other formats such as Printer Control Language (PCL), PostScript (PS),
Scalable Vector Graphics (SVG), XML, Print, Abstract Window Toolkit (AWT), Maker Interchange
Format (MIF), or TXT. You can also set the layout and font with the Apache FOP API. The Apache
FOP takes an XSL formatting object (an XSL-FO object) as input and produces a PDF (or other format)
document as output. XSL-FO is defined in the XSL 1.0 specification.! Therefore, to convert XML to
PDF, you first need to convert XML to XSL-FO and subsequently convert XSL-FO to PDF.

Installing the Software

Before you can set up your project, you need to download the Apache FOP? zip file fop-0.20.5-bin.zip
and extract the zip file to a directory. Assuming <FOP> is the directory in which you extracted the FOP

zip file, you need the JAR files listed in Table 12-1 for developing an XML to PDF conversion application.

Table 12-1. Apache FOP JAR Files

JAR File Description
<FOP>/build/fop.jar FOP API classes
<FOP>/1ib/avalon-framework-cvs-20020806.jar Logger classes
<FOP>/1ib/batik.jar Graphics classes
<FOP>/1ib/xercesImpl-2.2.1.jar The Xerces API
<FOP>/1ib/xml-apis.jar The XML API
<FOP>/lib/xalan-2.4.1.jar The XSLT API

You also need to download JDK 5.0. (You can also use another version of the JDK such as 1.4
or 6.0.)

1. Seehttp://www.w3.0rg/TR/xs1/.
2. For more information about Apache FOP, see http://xmlgraphics.apache.org/fop/.

311



312

CHAPTER 12 CONVERTING XML TO PDF

Setting Up the Eclipse Project

To compile and run the code examples, you will need an Eclipse project. You can download project
Chapter12 from the Apress website (http://www.apress.com) and import it into your Eclipse work-
space by selecting File » Import. The Chapter12 project consists of a com.apress.pdf package and
the Java class XMLToPDF. java in the package. The XMLToPDF. java application performs the XML to
PDF conversion. The Chapter12 project also consists of an example XML document (catalog.xml
in Listing 12-1) and an example XSLT style sheet (catalog.xslt in Listing 12-2).

To compile and run the XML to PDF code example, you need some Apache FOP JAR files in your
project’s Java build path; Figure 12-1 shows these JAR files. You also need to set the JRE system library
to JRE 5.0, as shown in Figure 12-1.

& Properties for Chapter12 = |D|ﬂ

[tvpefiter text =] Java Build Path LIV

2 Source I = Projects B4 Libraries | % Order and Export I
JARs and class Folders on the build path:

| avalon-framework-cvs-20020806. jar - i ApacheFOPfo Aadd JARs. .. |
| batik.jar - C:\ApacheFOPfop-0.20.5)lib
| Fop.jar - C:\ApacheFOPYfop-0.20.5\build Add External JARs. .. |
xalan-2.4.,1.jar - C\ApacheFOPfop-0.20.5)lib el e
xercesImpl-2.2,1.jar - CiiApacheFOP Fop-0.20,5ib $I
| xml-apis.jar - Ci\ApacheFOP fop-0.20.5ib add Library. .. |
=, JRE System Library [JRES.0]
Add Class Folder... |
Edit. .. |

Remayve |

L3 313151.51.51

4] | i
Defaulk output Folder:

| Chapter12/build Browse. .. |
[8]4 I Cancel |

Figure 12-1. Chapter12 Java build path

Figure 12-2 shows the Chapter12 project directory structure.



Hierarchy Fﬂ@ﬁm =0

EES

1 |

El-H3 com.apress.pdf
- [J] ¥MLToPDF.java

[+-E) JRE System Library [IRES.0]
-4 fop.jar - C:iapacheFOP fop-0.20.5build
-4 avalon-framework-cvs-20020806. jar - Chapa
-4 batik.jar - CApacheFOPYfop-0.20,5\ib
-4 xalan-2.4.1.jar - C:\ApacheFOP fop-0.20.51)it
-4 xercesImpl-2.2.1.jar - CihApacheFOPfop-0.21
-4 xml-apis.jar - CilApacheFOPYfop-0,20,5ib

----- |=| catalog.xml

catalog.xslt

2

Figure 12-2. Chapter12 Project directory structure

CHAPTER 12 CONVERTING XML TO PDF 313

Converting an XML Document to XSL-FO

An XSL-FO formatting object includes formatting information about the data to be presented in

a PDF document, the layout and fonts used in the document, and the tables in the document. To
convert an XML document to a PDF document, first you need to convert the XML document to an
XSL-FO document. The procedure to convert an XML document to an XSL-FO document is as follows:

. Create an XSLT to transform XML to XSL-FO.

. Set the parser and transformer system properties.

. Create a Transformer object.

1
2
3. Create a Document object from the XML document.
4
5

. Transform the XML document to an XSL-FO document.

An XSL-FO document is in the FO namespace. Therefore, an XSL-FO document includes a
namespace declaration, xmlns: fo=http://www.w3.0rg/1999/XSL/Format, in the root element fo:root.
Table 12-2 lists some of commonly used elements in an XSL-FO document.

Table 12-2. XSL-FO Elements

Element

Attributes

Subelements Description

fo:root

fo:layout-master-set

fo:simple-page-master

xmlns:fo

margin-right, margin-left,
margin-bottom, margin-top
page-width, page-height,
master-name

fo-layout-master-set, Rootelementin an
fo-page-sequence XSL-FO document

fo:simple-page-master Consists of a set of
page masters (at
least one page
master is required)

fo:region-body Specifies page layout



314 CHAPTER 12 CONVERTING XML TO PDF

Table 12-2. XSL-FO Elements (Continued)

Element Attributes Subelements Description
fo:page-sequence master-reference fo:title, Specifies the order of
fo:static-content, page masters

fo:flow
fo:block

flow-name

space-before, space-after
font-weight, font-size

fo:list-block provisional-distance-

between-starts,

provisional-label-separation

fo:list-item text-indent

fo:table border-spacing, table-layout

fo:table-column column-number

column-width
fo:table-header
fo:table-body table-layout
fo:table-row font-weight

fo:table-cell column-number

fo:
fo:

fo:
fo:

fo:

fo:
fo:

fo:
fo:
fo:

fo:
fo:
fo:
fo:

flow
block

table,
list-block

list-item

list-item-label
list-item-body

table-column,
table-header,
table-body

table-row
table-row
table-cell
block

Page content

Base element for
page content;
includes formatting
information.

Specifies a block that
includes a list

Specifies a list item

Specifies a table in a
page

Column in a table

Table header
Table rows
Row in a table

Row cell that has the
text of a row cell

The DTD for the XSL-FO object is available from http://www.renderx.com/Tests/validator/
102000.dtd.html. In this section, we will show how to convert an example XML document, catalog.xml,
to an XSL-FO document using XSLT. Listing 12-1 shows the example XML document, catalog.xml.

Listing 12-1. catalog.xml

<?xml version="1.0" encoding="UTF-8"?>
<catalog>

<journal>

<section>Java Technology</section>
<publisher>IBM developerWorks</publisher>
<level>Introductory</level>
<edition>Nov-2004</edition>

<title>Getting started with enumerated types</title>

<author>Brett MclLaughlin</author>
</journal>

<journal>

<section>Java Technology</section>



CHAPTER 12 CONVERTING XML TO PDF

<publisher>IBM developerWorks</publisher>
<level>Intermediate</level>
<edition>Sep-2004</edition>
<title>Migrating to Eclipse</title>
<author>David Gallardo</author>

</journal>

<journal>
<section>Java Technology</section>
<publisher>IBM developerWorks</publisher>
<level>Intermediate</level>
<edition>Jan-2004</edition>
<title>Design service-oriented architecture frameworks with J2EE technology</title>
<author>Naveen Balani</author>

</journal>
</catalog>

The Apache FOP API generates a PDF document from an XSL-FO document. The PDF docu-
ment presents the XML document data in the form of a table. Therefore, you first need to convert the
example XML document to an XSL-FO document using XSLT. An XSLT style sheet that converts XML
to XSL-FO retrieves data from the XML document and, using elements in the XSL-FO namespace,
creates a formatting object representation of the XML data. (Table 12-2 discussed the XSL-FO
namespace elements.) Listing 12-2 shows the example XSLT document, catalog.xslt, to convert
the example document to an XSL-FO document.

Listing 12-2. catalog.xslt

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.1" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format" exclude-result-prefixes="fo">
<xsl:output method="xml" version="1.0" omit-xml-declaration="no" indent="yes"/>
¢l-- ========================= -->

<xsl:template match="/catalog">
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<!--Setting up the Font and the Pages -->
<fo:layout-master-set>
<fo:simple-page-master master-name="simpleA4" page-height="29.7cm"
page-width="75cm" margin-top="2cm" margin-bottom="2cm"
margin-left="5cm" margin-right="5cm">
<fo:region-body/>
</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-reference="simpleA4">
<fo:flow flow-name="xsl-region-body">
<fo:block font-size="40pt"
font-weight="bold" text-align="center"
space-after="5mm">
Catalog
</fo:block>
<fo:block font-size="25pt">

315



316 CHAPTER 12 CONVERTING XML TO PDF

<fo:table table-layout="fixed">
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>

<!--Setting up the header -->

<fo:table-header>
<fo:table-row font-weight="bold"><fo:table-cell>
<fo:block>
<xsl:text>Section</xsl:text>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:text>Publisher</xsl:text>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:text>Level</xsl:text>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:text>Edition</xsl:text>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:text>Title</xsl:text>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:text>Author</xsl:text>
</fo:block>
</fo:table-cell>
</fo:table-row>

</fo:table-header>

<fo:table-body>
<!--Calling template to add data from XML document to XSL-FO Table -->
<xsl:apply-templates select="journal"/»>
</fo:table-body>
</fo:table>
</fo:block>
</fo:flow>
</fo:page-sequence>
<!--End of root element of XSL-FO document -->
</fo:root>



CHAPTER 12

</xsl:template>
<!--Template to add data to XSL-FO document -->
<xsl:template match="journal">

<fo:table-row>
<fo:table-cell>
<fo:block>
<xsl:value-of select="section"/>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select="publisher"/>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select="level"/>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select="edition"/>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select="title"/>
</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>
<xsl:value-of select="author"/>
</fo:block>
</fo:table-cell>
</fo:table-row>

</xsl:template>
</xsl:stylesheet>

Setting the System Properties

CONVERTING XML TO PDF

You perform the XML to XSL-FO transformation using the Transformation API for XML, which
was discussed in Chapter 5. You will parse the example XML document using a DocumentBuilder
parser and transform it using a Transformer object. So, you need to set the system properties
javax.xml.parsers.DocumentBuilderFactory and javax.xml.transform.TransformerFactory,

as shown in Listing 12-3. You use DocumentBuilderFactory to create a DocumentBuilder object

and TransformerFactory to create a Transformer object.

317



318

CHAPTER 12 CONVERTING XML TO PDF

Listing 12-3. Setting System Properties

System.setProperty("javax.xml.parsers.DocumentBuilderFactory"”,
"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");
System.setProperty

("javax.xml.transform.TransformerFactory",
"org.apache.xalan.processor.TransformerFactoryImpl");

Creating a Document

You can create a Document object by parsing an XML document with a DocumentBuilder object.
You obtain a DocumentBuilder object from a DocumentBuilderFactory object. Therefore, you need to
create a DocumentBuilderFactory object using the static method newInstance(). Subsequently, create
aDocumentBuilder object from the DocumentBuilderFactory object using the method
newDocumentBuilder(), as shown in Listing 12-4. You can parse an XML document using one of the
overloaded parse() methods from an InputStream, an InputSource, or a File. The example applica-
tion parses the XML document from a File object, as shown in Listing 12-4. The parse(File) object
returns a Document object.

Listing 12-4. Parsing an XML Document

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse(new File("catalog.xml"));

Creating a Transformer

You also need to create a Transformer object to transform the Document object obtained with a
DocumentBuilder object. You can obtain a Transformer object from a TransformerFactory object.
Therefore, create a TransformerFactory object using the static method newInstance(), as shown in
Listing 12-5. To set a stylesheet on the Transformer object obtained from the TransformerFactory
object, create a StreamSource object from the example style sheet. Subsequently, create a Transformer
object using the method newTransformer(StyleSource).

Listing 12-5. Creating a Trans former Object

TransformerFactory tFactory = TransformerFactory.newInstance();
StreamSource stylesource = new StreamSource(new File("catalog.xslt"));
Transformer transformer = tFactory.newTransformer(stylesource);

Transforming the XML Document to XSL-FO

The Transformer class provides the method transform(Source, Result) to transform XML input
to output. You can specify the input as DOMSource, SAXSource, or StreamSource. You can specify the
output as DOMResult, SAXResult, or StreamResult. In the example application, input is specified as
DOMSource, and output is specified as StreamResult. Therefore, create a DOMSource object from the
Document object, and create a StreamResult object from a catalog. fo file, as shown in Listing 12-6.
Subsequently, transform the example XML document using the transform(DOMSource, SAXResult)
object, as shown in Listing 12-6.



CHAPTER 12 CONVERTING XML TO PDF

Listing 12-6. Transforming an XML Document to XSL-FO

DOMSource source = new DOMSource(document);
StreamResult result = new StreamResult("catalog.fo");
transformer.transform(source, result);

The XSL-FO document, catalog. fo, presents the XML document data in the form of a table. The
layout-master-set element specifies the page layout and page characteristics such as the page margins,
page width, and page height. The element page-sequence defines an XSL-FO page. Fo-block elements
specify the page content. The fo-table element defines a table. Listing 12-7 shows the XSL-FO docu-
ment generated from the transformation.

Listing 12-7. catalog. fo

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master margin-right="5cm"
margin-left="5cm" margin-bottom="2cm"
margin-top="2cm" page-width="75cm"
page-height="29.7cm" master-name="simpleA4">
<fo:region-body/>
</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-reference="simpleA4">
<fo:flow flow-name="xsl-region-body">
<fo:block space-after="5mm" text-align="center" font-weight="bold" font-size="40pt">
Catalog

</fo:block>
<fo:block font-size="25pt">
<fo:table table-layout="fixed">
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-column column-width="10cm"/>
<fo:table-header>
<fo:table-row font-weight="bold">
<fo:table-cell>
<fo:block>Section</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Publisher</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Level</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Edition</fo:block>
</fo:table-cell>
<fo:table-cell>
<fo:block>Title</fo:block>
</fo:table-cell>
<fo:table-cell>

319



320 CHAPTER 12 CONVERTING XML TO PDF

<fo:block>Author</fo:block>
</fo:table-cell>

</fo:table-row>

</fo:table-header>

<fo:table-body>

<fo:table-row>

<fo:table-cell>

<fo:block>Java Technology</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>IBM developerWorks</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>Introductory</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>Nov-2004</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>Getting started with enumerated types</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>Brett McLaughlin</fo:block>
</fo:table-cell>

</fo:table-row>

<fo:table-row>

<fo:table-cell>

<fo:block>Java Technology</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>IBM developerWorks</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>Intermediate</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>Sep-2004</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>Migrating to Eclipse</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>David Gallardo</fo:block>
</fo:table-cell>

</fo:table-row>

<fo:table-row>

<fo:table-cell>

<fo:block>Java Technology</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>IBM developerWorks</fo:block>
</fo:table-cell>

<fo:table-cell>
<fo:block>Intermediate</fo:block>



CHAPTER 12 CONVERTING XML TO PDF

</fo:table-cell>

<fo:table-cell>
<fo:block>Jan-2004</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>Design service-oriented architecture
frameworks with J2EE technology</fo:block>
</fo:table-cell>

<fo:table-cell>

<fo:block>Naveen Balani</fo:block>
</fo:table-cell>

</fo:table-row>

</fo:table-body>

</fo:table>

</fo:block>

</fo:flow>

</fo:page-sequence>

</fo:root>

Generating a PDF Document

In the following sections, you will generate a PDF document from the XSL-FO document, catalog. fo,
with the Apache FOP API. The procedure to generate a PDF document from an XSL-FO document is
as follows:

1. Create a FOP driver.

2. Set the FOP driver renderer to the PDF renderer.

3. Specify the input for the XSL-FO document and the output for the PDF document.
4. Run the FOP driver to generate the PDF document.

You need to import the Apache FOP packages org.apache.fop.apps and org.apache.avalon.
framework.logger to the XMLToPDF. java application.

Creating a FOP Driver

To convert the XSL-FO document to a PDF document, you need to create a FOP driver object, as
shown in Listing 12-8. You also need to create a console logger with the level setting LEVEL_INFO and
set thelogger on the FOP driver and MessageHandler. You can also set the logger level to LEVEL_DEBUG,
LEVEL_DISABLED, LEVEL_ERROR, LEVEL_FATAL, or LEVEL_WARN. Consolelogger outputs to the standard
output stream. You can also use a BufferedLogger, which outputs to a StringBuffer. The MessageHandler
class generates the message output. By default, MessageHandler outputs to the screen. You can also
configure the MessageHandler class to output to a file. The setScreenlLogger (Logger) method sets the
screen logger of the MessageHandler class.

Listing 12-8. Creating a FOP Driver

Driver driver=new Driver();

Logger logger=new Consolelogger(Consolelogger.LEVEL INFO);
driver.setlogger(logger);
org.apache.fop.messaging.MessageHandler.setScreenlogger(logger);

321



322

CHAPTER 12 CONVERTING XML TO PDF

You can render an XSL-FO document to various output types using the corresponding renderer.
Table 12-3 lists the different rendering types supported by the FOP driver.

Table 12-3. Renderer Types

Render Type Description

RENDER_PDF Renders to a PDF document
RENDER_AWT Renders to a GUI window
RENDER_MIF Renders to MIF

RENDER XML Renders to an XML document
RENDER_PCL Renders to a PCL document
RENDER_PS Renders to a Postscript document
RENDER_TXT Renders to a text document
RENDER_SVG Renders to SVG

Converting XSL-FO to PDF

Because you will be converting an XSL-FO document to a PDF document, set the renderer type to
Driver.RENDER_PDF, as shown here:

driver.setRenderer(Driver.RENDER PDF);

You need to specify the input XSL-FO document for the FOP driver, as shown next. You set the
XSL-FO document as input using the setInputSource(InputSource) method.

InputStream input=new FileInputStream(new File("catalog.fo")));
driver.setInputSource(new InputSource(input));

You also need to set the output for the PDF document generated with the FOP driver. You set
the output using the method setOutputStream(OutputStream), as shown here:

OutputStream output=new FileOutputStream(new File("catalog.pdf")));
driver.setOutputStream(output);

To generate a PDF document from the XSL-FO document, run the FOP driver using the method
run(), as shown next. Subsequently, close the Driver object using the close() method.

driver.run();
output.flush();
output.close();

Viewing the Complete Example

Listing 12-9 shows the Java application, XMLToPDF. java, for converting an XML document to a PDF

document. The application consists of the methods generateXSLFO(File xmlFile, File xsltFile)
and generatePDF (). In the generateXSLFO() method, a DocumentBuilder parses an XML document to
obtain a Document object, and a Transformer transforms the Document object to an XSL-FO file using
a stylesheet. In the generatePDF () method, a FOP driver converts the XSL-FO file to a PDF document.



CHAPTER 12

Listing 12-9. XMLToPDF. java

package com.apress.pdf;

import org.apache.fop.apps.*;

import org.apache.avalon.framework.logger.*;
import java.io.*;

import org.xml.sax.InputSource;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.w3c.dom.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream.*;

public class XMLToPDF {
public void generateXSLFO(File xmlFile, File xsltFile) {
try {

System.setProperty
("javax.xml.parsers.DocumentBuilderFactory",
"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

System.setProperty("javax.xml.transform.TransformerFactory",
"org.apache.xalan.processor.TransformerFactoryImpl");
// Create a DocumentBuilderFactory
DocumentBuilderFactory factory = DocumentBuilderFactory
.newInstance();

// Create DocumentBuilder object

DocumentBuilder builder = factory.newDocumentBuilder();
// Parse example XML Document

Document document = builder.parse(xmlFile);

// Create a TransformerFactory object

CONVERTING XML TO PDF

TransformerFactory tFactory = TransformerFactory.newInstance();

// Create a Stylesource object from the style sheet File object

StreamSource stylesource = new StreamSource(xsltFile);

// Create a Transformer object from the StyleSource object

Transformer transformer = tFactory.newTransformer(stylesource);

// Create a DOMSource object from an XML document
DOMSource source = new DOMSource(document);

// Create a StreamResult object to output the result of a
// transformation

StreamResult result = new StreamResult("catalog.fo");

// Transform an XML document with an XSLT style sheet
transformer.transform(source, result);

} catch (TransformerConfigurationException e) {

System.out.println(e.getMessage());

323



324 CHAPTER 12 CONVERTING XML TO PDF

} catch (TransformerException e) {

System.out.println(e.getMessage());
} catch (SAXException e) {
System.out.println(e.getMessage());

} catch (ParserConfigurationException e) {

System.out.println(e.getMessage());
} catch (IOException e) {
System.out.println(e.getMessage());

}

public void generatePDF() {
try { //Create a FOP driver
Driver driver = new Driver();
//Create and set a logger on the driver
Logger logger = new Consolelogger(Consolelogger.LEVEL INFO);
driver.setlogger(logger);
org.apache.fop.messaging.MessageHandler.setScreenLogger(logger);
//Set renderer type
driver.setRenderer(Driver.RENDER_PDF);
//Set input and output
InputStream input = new FileInputStream(new File("catalog.fo"));
driver.setInputSource(new InputSource(input));
OutputStream output = new FileOutputStream(new File("catalog.pdf"));
driver.setOutputStream(output);
//Run FOP driver
driver.run();
output.flush();
output.close();
} catch (IOException e) {
} catch (org.apache.fop.apps.FOPException e) {
System.out.println(e.getMessage());

}

public static void main(String[] argv) {

XMLTOPDF xmlToPDF = new XMLToPDF();
File xmlFile = new File("catalog.xml");
File xsltFile = new File("catalog.xslt");

xmlToPDF.generateXSLFO(xmlFile, xsltFile);
xmLToPDF.generatePDF();



CHAPTER 12 CONVERTING XML TO PDF

You can run the application XMLToPDF. java in Eclipse with the procedure explained in Chapter 1.
Listing 12-10 shows the output generated from the application. As shown in the output, org.pache.
xerces.parsers.SAXParser parses the XSL-FO object.

Listing 12-10. Output from Converting XSL-FO to PDF

[INFO] Using org.apache.xerces.parsers.SAXParser as SAX2 Parser
[INFO] building formatting object tree

[INFO] setting up fonts

[INFO] [1]

[INFO] Parsing of document complete, stopping renderer

The PDF document catalog.pdf gets generated and added to the Chapter12 project, as shown
in Figure 12-3.

EES

B2 sre
El-H3 com.apress.pdf

[ [J] ¥MLToPDF.java
-2, JRE System Library [JRES.0]
fop.jar - :\ApacheFOPYfop-0.20.5build
avalon-framework-cvs-20020806, jar - C:hApa
batik.jar - C:\ApacheFOP Fop-0.20.51ib
xalan-2.4,1.jar - C\ApacheFOPfop-0.20.54it
xercesImpl-2,2.1.jar - CiApacheFOP fop-0.21
wml-apis. jar - C:hApacheFOPYFop-0.20,5Yib
----- catalog.fo
----- ﬁ catalog,pdf
----- |=| catalog.xml
X catalog. sk

1 | i

Figure 12-3. Chapter12 project directory structure including catalog. pdf

T
e e
[y e g g ey

Summary

In this chapter, you learned how to convert an example XML document to a PDF document. You can
also generate other output types such as AWT, MIF, XML, PCL, PS, TXT, and SVG using the corre-
sponding renderer. To convert an XML document to a PDF document, first you convert the XML
document to an XSL-FO document, and subsequently you convert the XSL-FO document to a

PDF document. You convert the XML document to an XSL-FO document using an XSLT stylesheet
and the Transformer API. You can convert the XSL-FO document to a PDF document using the
FOP driver.

325






PART 6

Web Applications
and Services







CHAPTER 13

Building Web Applications with Ajax

Asynchronous JavaScript and XML (Ajax) is a term, coined by Jesse James Garrett of Adaptive
Path,! used to describe a web technique that allows you to create asynchronous web applications
using JavaScript, the Document Object Model (DOM), and XMLHttpRequest technologies. Using this
technique, a browser-based user interface can interact with the server to update selected parts of a
web page without having to reload the web page.

This web technique decreases the amount of data exchanged between a browser and the back
end, which in turn decreases latency and makes a browser-based user interface much more interactive;
and this makes it more like a conventional desktop application.

Ajax has numerous useful applications; some of the more common ones are as follows:

Dynamic form data validation: While a user fills in a form that requires a unique identifier in a
field, a form field can be validated without the complete form being submitted.

Autocompletion: While a user types data in a form field, the form field gets autocompleted
based on data fetched from the server.

Data refreshes on a page: Some web pages require that parts of the web page be refreshed
frequently; a weather website, for example, has this requirement. Using Ajax techniques, a web
page can poll a server for the latest data and refresh selected parts of the web page, without
reloading the page.

JavaScript and DOM scripting are basic web technologies; therefore, we won'’t discuss them in
detail here. We will, however, cover how the XMLHttpRequest object works.

Note If you want to read more about JavaScript, DOM scripting, and general Ajax techniques, check out
Beginning JavaScript with DOM Scripting and Ajax by Christian Heilmann (Apress, 2006). For a lot more on Ajax
programming with Java, check out Pro Ajax with Java Frameworks by Nathaniel T. Schutta and Ryan Asleson
(Apress, 2006).

1. The seminal article on Ajax is available at http://adaptivepath.com/publications/essays/archives/
000385. php. 329



330

CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

What Is XMLHttpRequest?

The XMLHttpRequest object provides asynchronous communication between a browser-based user
interface and web? server-based business services. Using the XMLHttpRequest object, clients can
submit and retrieve XML data to and from a web server without reloading the web page. You can
convert XML data to HTML on the client side using the DOM and XSLT.

Microsoft introduced XMLHt tpRequest within Internet Explorer (IE) 5 as ActiveXObject.3 Most
browsers support XMLHttpRequest; however, the implementations are not interoperable. For example,
you can create an instance of the XMLHttpRequest object in IE 6 with the following code:

var req = new ActiveXObject("Microsoft.XMLHTTP");

In IE 7, XMLHttpRequest is available as a window object property. You create an instance of the
XMLHttpRequest object in IE 7 as shown here:

var req = new XMLHttpRequest();

Recently, the W3C introduced a Working Draft4 of the XMLHttpRequest object, which will
standardize the implementations of it. The XMLHttpRequest object provides various properties for
implementing HTTP client functionality, which are discussed in Table 13-1.

Table 13-1. XMLHttpRequest Properties

Property Description
onreadystatechange Sets the callback method for asynchronous requests.
readyState Retrieves the current state of a request. 0: the XMLHttpRequest object has

been created. 1: the object has been created, and the open() method

has been invoked. 2: the send() method has been called, but the response
has not been received. 3: some data has been received that is available
in the responseText property. The property responseXML produces null,
and response headers and status are not completely available. 4: the
response has been received.

responseText Retrieves the text of the response from the server.
responseXML Retrieves the XML DOM of the response from the server.
status Retrieves the HTTP status code of the request. For status code

definitions, refer to http://www.w3.0rg/Protocols/rfc2616/
1fc2616-sec10.html.

statusText Retrieves the status text of the HTTP request.

The XMLHttpRequest object methods are used to open an HTTP request, send the request, and
receive a response. Table 13-2 describes the XMLHttpRequest methods.

2. It can be a web container within an application server, which is what we will use. In this chapter, we will use
the terms web server and application server interchangeably.

3. The ActiveXObject API is available at http://msdn2.microsoft.com/en-us/library/6958xykx.aspx.

4. You can find the W3C Working Draft for the XMLHttpRequest object at http://www.w3.0rg/TR/XMLHttpRequest/.



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX
Table 13-2. XMLHttpRequest Methods
Method Description
abort() Cancels the current HTTP request.

getAl1ResponseHeaders()

getResponseHeader (string header)

open(string method, string url, boolean
asynch, string username, string password)

send(data)

setRequestHeader(string headerName, string
headerValue)

Gets all the response headers. readyState is
required to be 3 or 4 to retrieve the response
headers.

Gets a specified response header. readyState
is required to be 3 or 4 to retrieve a response
header.

Opens an HTTP request but does not send a
request. The readyState property gets set to 1.
The responseText, responseXML, status, and
statusText properties get reset to their initial
values. The HTTP method and server URL,
which may be relative or absolute, are required
parameters. The boolean parameter asynch
specifies whether the HTTP request is asynchro-
nous; the default value is true. The parameters
username and password are optional.

Sends an HTTP request to the server, including
data, which can be a string, an array of
unsigned bytes, an XML DOM object, or null.
This method is synchronous or asynchronous,
corresponding to the value of the asynch
parameter to the open() method. If synchro-
nous, the method does not return until the
request is completely loaded and the entire
response has been received. If asynchronous,
the method returns immediately. The
readyState property gets set to 2 after invoking
the send() method. The readyState property
gets set to 4 after the request has completed
loading.

Sets HTTP request headers.

Now that you've looked at some of the theory behind Ajax and seen what it can do, you’ll imple-
ment a working example—dynamic form validation.

Installing the Software

Ajax, being a web technique rather than a technology, does not require any additional software other
than a browser that supports the XMLHttpRequest object. If not already installed, you need to install

a web browser, such as IE 7 or 6 or Netscape 6+.

To develop and deploy an Ajax web application, you need an application server that supports
J2EE 1.4. Therefore, download and install JBoss 4.0.2. You could also use any other application server
that supports J2EE 1.4, such as BEA WebLogic, IBM WebSphere, Oracle Application Server, or Sun

One Application Server.

331



332

CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

You also need to download and install the J2EE 1.4 SDK and J2SE 5.0 so you can compile the
example application.

The Ajax application you will develop retrieves data from a database using a JDBC? driver.
Therefore, you need to install a relational database along with a compatible JDBC driver. We use the
open source relational database MySQL in this chapter; if you choose to do the same, download and
install the MySQL 5.0 database and a compatible MySQL Connector/J JDBC driver. You may, of
course, use any other JDBC-supported relational database, such as Oracle, IBM DB2, or Microsoft
SQL Server.

Configuring JBoss with the MySQL Database

After installing the MySQL database, you need to create a MySQL database user. To create a user, log
in to the MySQL database using the following command:

mysql --user=root mysql

You can add a new user to the user table with a GRANT statement, as shown in the following
example, where you create the user mysql with the password mysql:

GRANT ALL PRIVILEGES ON test TO 'mysql'@'localhost' IDENTIFIED BY 'mysql' ;

You also need to create an example table in the MySQL database. To create the example table,
log in to the database as the mysql user and run the SQL script shown in Listing 13-1.

Listing 13-1. SQL Script catalog.sql

CREATE TABLE Catalog(CatalogId VARCHAR(25),

Journal VARCHAR(25), Publisher Varchar(25),

Edition VARCHAR(25), Title Varchar(45),

Author Varchar(25));

INSERT INTO Catalog VALUES

('catalogl', "XML Zone', 'IBM developerWorks', 'Jan 2006,
'Managing XML data: Tag URIs', 'Elliotte Harold');

INSERT INTO Catalog VALUES

('catalog2', "XML Zone', "IBM developerWorks"',

'Jan 2006', 'Practical data binding', 'Brett MclLaughlin');

You also need to configure the JBoss application server with the MySQL database. Assuming
< jboss-4.0.2> as the root of the JBoss 4.0.2 install directory, you can proceed as follows:

1. To use the JBoss 4.0.2 application server with MySQL, you first need to copy the MySQL
driver classes to the JBoss server classpath. So, copy mysql-connector-java-3.1.11-bin.jar
to the < jboss-4.0.2>/server/default/lib directory.

2. To use a MySQL data source, copy < jboss-4.0.2>/docs/examples/jca/mysql-ds.xml to the
< jboss-4.0.2>/server/default/deploy directory. Modify the mysql-ds.xml configuration file
by setting the <driver-class> XML element to com.mysql.jdbc.Driver and the <connection-url>
XML element to jdbc:mysql://localhost:3306/test. In mysql-ds.xml, specify user-name as
mysql and password as mysql. The jndi-name is set to MySqlDS by default. Listing 13-2 shows
the fully configured mysql-ds.xml file.

5. Information about JDBC technology is available at http://java.sun.com/javase/technologies/database.jsp.
6. MySQL 5.0 is available at http://www.mysql.com.



Listing 13-2. Mysql-ds.xml

CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
<local-tx-datasource>

<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/test</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>mysql</user-name>

<password>mysql</password>

</local-tx-datasource>

</datasources>

3. You also need to modify <jboss-4.0.2>/server/default/conf/login-config.xml by adding
the <application-policy> XML element shown in Listing 13-3 to login-config.xml.

Listing 13-3. login-config.xml

<application-policy name

<authenticationy

<login-module code

= "MySqlDbRealm">

"org.jboss.resource.security.ConfiguredIdentitylLoginModule"”

<module-option
<module-option
<module-option
<module-option

flag = "required">
name ="principal"></module-option>
name ="userName">mysql</module-option>
name ="password">mysql</module-option>
name ="managedConnectionFactoryName">

jboss.jca:service=LocalTxCM,name=MySqlDS
</module-option>

</login-module>
</authentication>
</application-policy>

Modifying the mysql-ds.xml and login-config.xml files, as described previously, configures the
JBoss 4.0.2 server for use with an instance of the MySQL database.

Setting Up the Eclipse Project

In this chapter, you will develop a web application using Ajax techniques. To compile and run the
code examples, you will need an Eclipse project. You can download project Chapter13 from http://
www.apress.com and import it into your Eclipse workspace by selecting File » Import.

In the Eclipse project Chapter13, you will compile and deploy an Ajax application using an
Apache Ant build. xml file. If you are not familiar with Apache Ant, refer to the Apache Ant website’
or read Pro Apache Antby Matthew Moodie (Apress 2005).8

7. Seehttp://ant.apache.org/.

8. Seehttp://www.apress.com/book/bookDisplay.html?bID=10038.

333



334

CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

The example build.xml file has four targets: init, compile, webapp, and clean. These targets act
as follows:

1
2
3

4.

The init target creates the directories required for the Ajax application.
The compile target compiles a Java servlet? in the Ajax application.

The webapp target generates a J2EE 1.4-compliant web application archive (WAR) file and
deploys the WAR file to the JBoss application server.

Optional: The clean target deletes the project directories.

Listing 13-4 shows the build.xml file.

Listing 13-4. build. xml

<project name="ajax" default="webapp" basedir=".">
<property name="build" value="build"/>
<property name="src" value="." />
<property name="jboss.deploy"
value="C:\JBoss\jboss-4.0.2\server\default\deploy"/>
<property name="dist" value="dist"/>
<property name="j2sdkee" value="C:\J2sdkee1.4"/>
<property name="mysql" value="C:\MySOL\mysql-connector-java-3.1.11"/>
<target name="init">
<tstamp/>

<mkdir dir="¢${build}" />

<mkdir dir="${dist}" />

<mkdir dir="${build}/WEB-INF" />

<mkdir dir="¢${build}/WEB-INF/classes" />
</target>
<target name="compile" depends="init">
<javac debug="true" classpath=
"${j2sdkee}/1ib/j2ee.jar:${mysql}
/1ib/mysql-connector-java-3.1.11-bin.jar"
srcdir="¢${src}/WEB-INF/classes"
destdir="${src}/WEB-INF/classes">
<include name="**/*.java" />
</javac>
<copy todir="${build}/WEB-INF">
<fileset dir="WEB-INF" >

<include name="web.xml" />

</fileset>
</copy>

<copy todir="${build}/WEB-INF/classes">
<fileset dir="${src}/WEB-INF/classes" >

<include name="**/FormServlet.class" />

</fileset>
</copy>

9. Seehttp://java.sun.com/products/servlet/



CHAPTER 13

<copy todir="${build}">
<fileset dir="${src}" >
<include name="inputForm.jsp" />
</fileset>
</copy>
</target>
<target name="webapp" depends="compile">

BUILDING WEB APPLICATIONS WITH AJAX

<war basedir="${build}" includes="**/*.class,inputForm.jsp"
destfile="${dist}/ajax.war" webxml="WEB-INF/web.xml"/>
<copy file="${dist}/ajax.war" todir="${jboss.deploy}"/>

</target>

<target name="clean">
<delete dir="${dist}"/>
<delete dir="¢${build}"/>

</target>

</project>

In the Chapter13 Eclipse project, you need to set
Figure 13-1.

& Properties for Chapter13

the JRE system library to JRE 5.0, as shown in

N=TE

G D -

|tvpe filker bext 'l Jawva Build Path

JARs and class Folders on the build path:

2 Source I = Projects B Libraries | % Order and Export I

[+, JRE System Library [JRES.0]

Add JARs... |
Add External JaRs... |
Add Yariable. .. |
Add Library. .. |
Add Class Folder... |

Edit. .. |
Femayve |

Default output Folder:

Chapter13/build

Browse. .. |

[o]4 I Cancel |

Figure 13-1. Chapter13 project Java build path

335



336 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

Figure 13-2 shows the directory structure of the Chapter13 project.

Hierarchy & Package Explorer £2 =g
Py

=R

E'bd Chapter13
B sre

= WEB-INF

El-= dasses

EB com

Bl apress
E‘B ajax

------ Formaervlet.java

build. ¢l
catalog.jsp

-2, JRE System Library [JRES.0]

1 {1

Figure 13-2. Chapter13 project directory structure

You need to select the build targets in the Ant build.xml file that will compile and deploy the
Ajax web application. Right-click the build.xml file, select Run As, and select the second Ant Build item.
Select the Targets tab in the Chapter13 build.xml dialog box. Select the boxes for the init,

compile, and webapp targets, and click the Apply button, as shown in Figure 13-3.

& Chapter13 build.xml ﬂ

Modify attributes and launch.

Run an Ant buildfile, @

Mame: | Chapter13 build, xml

=] main I 7 Refresh oo Build ¢ Targets | % Classpath | 0% Properties I =i JRE I P& Enviranment I il I r
Check targets to execute:

Mame

| Description

compile

webapp [default]

O @ clean

4] |
3 ouk of 4 selected

[~ sort targets
[ Hide internal targets not selected For execution

Target execution order:

webapp, compile, init ;I Order.., |
-

Apply | Revert |
Run Close |

Figure 13-3. Selecting the Antbuild.xml targets



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

Next, you need to run the Ant build. xml file to compile the Ajax web application and deploy it
to the JBoss application server. Right-click build.xml in the Package Explorer, and select Run As and
the first Ant build. xml file. The Ant build.xml script runs, compiles, and deploys the Ajax web appli-
cation, as shown in Listing 13-5. We will discuss the details of the Ajax web application in the next
section.

Listing 13-5. Output of Ant Build File

Buildfile: C:\Documents and Settings\Deepak Vohra\workspace\Chapter13\src\build.
xml
init:

[mkdir] Created dir: C:\Documents and Settings\Deepak Vohra\workspace\Chapte
r13\src\build

[mkdir] Created dir: C:\Documents and Settings\Deepak Vohra\workspace\Chapte
r13\src\dist

[mkdir] Created dir: C:\Documents and Settings\Deepak Vohra\workspace\Chapte
113\src\build\WEB-INF

[mkdir] Created dir: C:\Documents and Settings\Deepak Vohra\workspace\Chapte
113\src\build\WEB-INF\classes
compile:

[copy] Copying 1 file to C:\Documents and Settings\Deepak Vohra\workspace\C
hapter13\src\build\WEB-INF

[copy] Copying 1 file to C:\Documents and Settings\Deepak Vohra\workspace\C
hapter13\src\build\WEB-INF\classes

[copy] Copying 1 file to C:\Documents and Settings\Deepak Vohra\workspace\C
hapter13\src\build
webapp:

[war] Building war: C:\Documents and Settings\Deepak Vohra\workspace\Chapt

er13\src\dist\ajax.war

[copy] Copying 1 file to C:\JBoss\jboss-4.0.2\server\default\deploy
init:
compile:
init:
BUILD SUCCESSFUL

Developing an Ajax Application

Now that you have put together the Eclipse project, you can start constructing the actual function-
ality of the Ajax application. In this section, you will create the functionality to validate data input in
an HTML form.

The input form requires a unique catalog ID to create a catalog entry. Therefore, you will vali-
date catalog ID input in the form against data in the database to check whether the catalog ID is
already specified in the database. Data typed in the HTML form is sent to a servlet URL using the
GET method. On the server side, an HTTP servlet’s doGet () method gets invoked. In the doGet ()
method, the input value is compared with data in the database. The HTTP servlet returns an XML
response that contains information about the validity of the input data.

In the client application, the XML response from the server is processed, and if the instructions
indicate that the data input is valid, the message “Catalog ID is Valid” displays. An XMLHttpRequest
request is sent to the server with each modification in the input field. Without Ajax, you would have
to submit the complete input form to the server and then reload the browser web page after a
response is received from the server.

337



338 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

The procedure to send an XMLHttpRequest request to the server involves the following steps:

. Invoke a JavaScript function from an event handler in response to an HTML event.
. Create an XMLHttpRequest object in the JavaScript function.
. Open an XMLHttpRequest request, which specifies the URL and the HTTP method.

1
2
3
4. Register a callback event handler that gets invoked when the request state changes.
5. Send an XMLHttpRequest request asynchronously.

6

. Retrieve the XML response, and modify the HTML page.

Next, you will examine the browser-side processing involved in the example application.

Browser-Side Processing

To initiate an XMLHttpRequest request, register a JavaScript function as an event handler for the
onkeyup event generated from the HTML form input field, catalogId, which is required to be vali-
dated. In the example application, a JavaScript function, validateCatalogId(), is invoked on the
onkeyup event, as shown in Listing 13-6.

Listing 13-6. Input Form

<form name="validationForm" action="validateForm" method="post">
<table>
<tr>
<td>Catalog ID:</td>
<td><input type="text"
size="20"
id="catalogId"
name="catalogId"
autocomplete="off"
onkeyup="validateCatalogId()"></td>
<td><div id="validationMessage"></div></td>
</tr>

</table>
</formy

In the JavaScript function validateCatalogId(), you need to create a new XMLHttpRequest object. If
abrowser supports the XMLHttpRequest object as an ActiveXObject object, the procedure to create an
XMLHttpRequest object is different when the XMLHttpRequest object is a window object property. IE 7
and Netscape support XMLHttpRequest as a window property, and IE 6 supports the XMLHTTPRequest
object as an ActiveXObject object. Therefore, you check to see whether the XMLHttpRequest object is
awindow object property and act accordingly, as shown in Listing 13-7.

Listing 13-7. Creating an XMLHttpRequest Object

<script type="text/javascript">
function validateCatalogId(){

var xmlHttpRequest=init();



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

function init(){
if (window.XMLHttpRequest) {
return new XMLHttpRequest();
} else if (window.ActiveXObject) {
return new ActiveXObject("Microsoft.XMLHTTP");
}
}

</script>

Next, you need to construct a URL to which the XMLHttpRequest will be sent. In the example
application, you will invoke a servlet, FormServlet. Within the web server, FormServlet is mapped to
the servlet URL pattern /validateForm, as specified in the web.xml deployment descriptor shown in
Listing 13-8.

Listing 13-8. web. xm1

<?xml version="1.0" ?>

<IDOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN'
"http://java.sun.com/dtd/web-app_2_3.dtd'>

<web-app>

<servlet>
<servlet-name>FormServlet</servlet-name>
<servlet-class>com.apress.ajax.FormServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>FormServlet</servlet-name>
<url-pattern>/validateForm</url-pattern>
</servlet-mapping>

</web-app>

Therefore, you specify the URL as
validateForm?catalogId=encodeURIComponent(catalogId.value), whereby the parameter
catalogId specifies the value of the catalog ID input in the HTML form, and you use the
encodeURIComponent (string) method to encode the catalog ID value. The HTTP method
specified is GET, because form data is encoded into the URL as shown in Listing 13-9.

Listing 13-9. Opening an HTTP Request

var catalogId=document.getElementById("catalogId");

xmlHttpRequest.open("GET",
"validateForm?catalogId="+
encodeURIComponent(catalogId.value), true);

You need to register a callback event handler with the XMLHttpRequest object using the
onreadystatechange property. In the example application, the callback method is the JavaScript
function processRequest(), as shown here:

xmlHttpRequest.onreadystatechange=processRequest;

Next, you need to send an HTTP request using the send() method, as shown here:

xmlHttpRequest.send(null);

339



340

CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

Because the HTTP method is GET, data sent with the send() method is set to null. Because the
callback event handler is processRequest(), the processRequest () function gets invoked when the
value of the readyState property changes. In the processRequest() function, the readyState prop-
erty value is retrieved. If the request has loaded completely, which is denoted by the readyState
value 4, and the HTTP status is "0K", you invoke the processResponse() JavaScript function to process
the response from the server, as shown in Listing 13-10.

Listing 13-10. Event Handler for the onreadystatechange Property Change Event

function processRequest(){
if(xmlHttpRequest.readyState==4){
if(xmlHttpRequest.status==200){
processResponse();

}
}

Next, we will discuss the server-side processing of the XMLHttpRequest request.

Web Server-Side Processing

The XMLHttpRequest object is sent to the relative URL

validateForm?catalogId=encodeURIComponent(catalogId.value), which invokes the FormServlet

servlet. Because the XMLHttpRequest method is GET, the doGet () method of the servlet gets invoked.
In the doGet () method, first you retrieve the value of the catalogId parameter, as shown here:

String catalogld = request.getParameter("catalogId");

Next, you obtain data from the database to check whether a catalog ID value is already specified
in the database. Connecting to a database is a two-step process:

1. First, you discover the database through a lookup process that is akin to looking up a phone
number in a phone directory, based on a name. This lookup process involves creating a JNDI!0
InitialContext object and invoking the lookup("java:MySqlDS") method on the object. The
lookup() method returns a DataSource object.

2. From the DataSource object, you create a Connection object, as shown in Listing 13-11.

Listing 13-11. Creating a Connection Object

InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)
initialContext.lookup("java:MySqlDS");
java.sql.Connection conn = ds.getConnection();

Subsequently, you create a Statement object to run a SQL query. Using the catalog ID value
specified in the input form, you create a SQL query to retrieve data from the database. You run the
SQL query using the executeQuery(String) method, which returns a ResultSet object, as shown in
Listing 13-12.

10. The JNDI API is part of J2EE 1.4.



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

Listing 13-12. Obtaining aResultSet Object

Statement stmt = conn.createStatement();
String query = "SELECT * from .Catalog WHERE catalogId=" + "'" +
catalogId + "'";
ResultSet rs = stmt.executeQuery(query);

Before you check the data obtained from the database to see whether the form input is valid,
you need to set the content type of the HttpServletResponse to text/xml and the cache-control
header to no-cache, as shown here:

response.setContentType("text/xml");
response.setHeader("Cache-Control", "no-cache");

The FormServlet servlet sends a response in the form of an XML string. Therefore, you need to
construct an XML DOM object that contains instructions about the validity of the catalog ID field value.

An empty ResultSet object implies that the catalog ID field value is not defined in the database
table Catalog; thus, the catalog ID field value is valid. A ResultSet object that contains data implies
that the catalog ID value is already defined in the database; thus, the catalog ID field value is not valid.

For a nonvalid catalog ID, you construct an XML string that includes the contents of a catalog
ID under the root element catalog. The first child element of the catalog root element is the
<valid>false</valid> element, which denotes that the catalog ID is not valid.

For the case where the catalog ID is valid, you construct an XML string that simply includes a
<valid>true</valid> element.

Listing 13-13 shows the XML response.

Listing 13-13. Returning an XML Response

if (rs.next()) {
out.println("<catalog>" + "<valid>false</valid>" + "<journal>" +
rs.getString(2) + "</journal>" + "<publisher>" +
rs.getString(3) + "</publisher>" + "<edition>" +
rs.getString(4) + "</edition>" + "<title>" +
rs.getString(5) + "</title>" + "<author>" +
rs.getString(6) + "</author>" + "</catalog>");
} else {
out.println("<valid>true</valid>");

+
+
+
+

}

If the catalog ID field value is valid, the input form can be posted to the server using the HTTP
POST method, which on the server side invokes the doPost () method in the FormServlet servlet. In
the doPost () method, you create a database Connection and add a catalog entry with the INSERT
statement.

Listing 13-14 shows the complete FormServlet.

Listing 13-14. FormServlet. java

package com.apress.ajax;

import java.io.*;

import java.sql.*;

import javax.naming.InitialContext;
import javax.servlet.*;

import javax.servlet.http.*;

3



342 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

public class FormServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
try {
// Obtain value of Catalog Id field to ve validated.
String catalogld = request.getParameter("catalogId");
// Obtain Connection
InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource) initialContext
.lookup("java:MySqlDS");
java.sgl.Connection conn = ds.getConnection();
// Obtain result set
Statement stmt = conn.createStatement();
String query = "SELECT * from Catalog WHERE catalogId=" + """
+ catalogId + "'";
ResultSet rs = stmt.executeQuery(query);
// set headers before accessing the Writer
response.setContentType("text/xml");
response.setHeader("Cache-Control", "no-cache");
PrintWriter out = response.getWriter();
// then write the response
// If result set is empty set valid element to true
if (rs.next()) {
out.println("<catalog>" + "<valid>false</valid>" + "<journal>"
+ rs.getString(2) + "</journal>" + "<publisher>"
+ rs.getString(3) + "</publisher>" + "<edition>"
+ rs.getString(4) + "</edition>" + "<title>"
+ rs.getString(5) + "</title>" + "<author>"
+ rs.getString(6) + "</author>" + "</catalog>");
} else {
out.println("<valid>true</valid>");
}
//Close the ResultSet, Statement,
//and Connection objects.
rs.close();
stmt.close();
conn.close();
} catch (javax.naming.NamingException e) {
} catch (SQLException e) {
}
}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
try {
// Obtain Connection
InitialContext initialContext = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource) initialContext
.lookup("java:MySqlDS");
java.sql.Connection conn = ds.getConnection();
String catalogld = request.getParameter("catalogId");
String journal = request.getParameter("journal");
String publisher = request.getParameter("publisher");
String edition = request.getParameter("edition");



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

String title = request.getParameter("title");
String author = request.getParameter("author");
Statement stmt = conn.createStatement();
String sql = "INSERT INTO Catalog VALUES(" + "\'" + catalogId
+ U\ "N 4 Journal + AT+ T MY
+ publisher + "\'" + "," + "\'" + edition + "\'" + ","
+ "\ 4 title + "\ 4+ ", 4 "\ 4 author + "\ + )"
stmt.execute(sql);
response.sendRedirect("catalog.jsp");
stmt.close();
conn.close();
} catch (javax.naming.NamingException e) {
response.sendRedirect("error.jsp");
} catch (SQLException e) {
response.sendRedirect("error.jsp");

On the browser side, in the processRequest() JavaScript function, if the HTTP request has
loaded completely, which corresponds to the readyState property value 4 and the status property
value 200, the processResponse() JavaScript function gets invoked. In the processResponse() func-
tion, you need to obtain the value of the responseXML property. The responseXML property contains
the response XML string that was set in the doGet () method of the FormServlet servlet:

var xmlMessage=xmlHttpRequest.responseXML;

The responseXML property contains instructions in XML form about the validity of the catalog ID
value specified in the input form. You need to obtain the value of the <valid> element using the
getElementsByTagName(string) method, as shown here:

var valid=xmlMessage.getElementsByTagName("valid")[0].firstChild.nodeValue;

If the <valid> element content is set to true, set the HTML validationMessage div to "Catalog
ID is Valid", and enable the submitForm button in the input form, as shown in Listing 13-15.

Listing 13-15. Setting the Validation Message

if(valid=="true"){
var validationMessage=document.getElementById("validationMessage");
validationMessage.innerHTML = "Catalog ID is Valid";
document.getElementById("submitForm").disabled = false;

If the <valid> element value is set to false, set the HTML of validationMessage div in the
catalog ID field row to "Catalog ID is not Valid", and disable the submitForm button. You can also
set the values of the other input fields, as shown in Listing 13-16.

Listing 13-16. Setting the Validation Message for the Nonvalid Catalog ID

if(valid=="false"){
var validationMessage=document.getElementById("validationMessage");
validationMessage.innerHTML = "Catalog ID is not Valid";
document.getElementById("submitForm").disabled = true;

343



344 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

Listing 13-17 shows the inputForm. jsp page.

Listing 13-17. inputForm. jsp

<html>

<head>

<script type="text/javascript">
function validateCatalogId(){

var xmlHttpRequest=init();
function init(){
if (window.XMLHttpRequest) {
return new XMLHttpRequest();
} else if (window.ActiveXObject) {

return new ActiveXObject("Microsoft.XMLHTTP");

}
var catalogId=document.getElementById("catalogId");

xmlHttpRequest.open("GET", "validateForm?catalogld="+
encodeURIComponent(catalogld.value), true);
xmlHttpRequest.onreadystatechange=processRequest;
xmlHttpRequest.send(null);

function processRequest(){

if(xmlHttpRequest.readyState==4){
if(xmlHttpRequest.status==200){

processResponse();

}
}
}

function processResponse(){
var xmlMessage=xmlHttpRequest.responseXML;
var valid=xmlMessage.getElementsByTagName("valid")[0].firstChild.nodeValue;

if(valid=="true"){



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

var validationMessage=document.getElementById("validationMessage");
validationMessage.innerHTML = "Catalog ID is Valid";
document.getElementById("submitForm").disabled = false;

var journalElement=document.getElementById("journal");

journalElement.value = "";

var publisherElement=document.getElementById("publisher");

publisherElement.value = "";

var editionElement=document.getElementById("edition");

editionElement.value = "";

var titleElement=document.getElementById("title");

titleElement.value = "";

var authorElement=document.getElementById("author");

authorElement.value = "";

}
if(valid=="false"){

var validationMessage=document.getElementById("validationMessage");
validationMessage.innerHTML = "Catalog ID is not Valid";
document.getElementById("submitForm").disabled = true;

var journal=xmlMessage.getElementsByTagName("journal")[0].firstChild.nodeValue;

var publisher=xmlMessage.getElementsByTagName("publisher")[0].firstChild.nodeValue;
var edition=xmlMessage.getElementsByTagName("edition")[0].firstChild.nodeValue;

var title=xmlMessage.getElementsByTagName("title")[0].firstChild.nodeValue;

var author=xmlMessage.getElementsByTagName("author")[0].firstChild.nodeValue;

var journalElement=document.getElementById("journal");
journalElement.value = journal;

var publisherElement=document.getElementById("publisher");
publisherElement.value = publisher;

var editionElement=document.getElementById("edition");
editionElement.value = edition;

var titleElement=document.getElementById("title");
titleElement.value = title;

var authorElement=document.getElementById("author");
authorElement.value = author;

}

}
}

345



346 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

</script>

</head>
<body>
<h1>Form for Catalog Entry</hi>
<form name="validationForm" action="validateForm" method="post">
<table>
<tr><td>Catalog ID:</td><td><input type="text"
size="20"
id="catalogId"
name="catalogId"
autocomplete="off"
onkeyup="validateCatalogId()"></td>
<td><div id="validationMessage"></div></td>
</tr>

<tr><td>Journal:</td><td><input type="text"
size="20"
id="journal"
name="journal"></td>
</tr>

<tr><td>Publisher:</td><td><input type="text"
size="20"
id="publisher"
name="publisher"></td>
</tr>

<tr><td>Edition:</td><td><input type="text"
size="20"
id="edition"
name="edition"></td>

</tr>
<tr><td>Title:</td><td><input type="text"
size="20"
id="title"
name="title"></td>
</tr>

<tr><td>Author:</td><td><input type="text"
size="20"
id="author"
name="author"></td>
</tr>

<tr><td><input type="submit"
value="Create Catalog"
id="submitForm"
name="submitForm"></td>



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

</tr>
</table>

</form>

</body>
</html>

Listing 13-18 shows the page to which inputForm. jsp is forwarded when there is no error when
updating the database.

Listing 13-18. catalog. jsp

<html>
<head>

</head>
<body>
<%out.println("Database Updated");%>

</body>
</html>

Listing 13-19 shows the page to which inputForm. jsp is forwarded where there is an error when
updating the database.

Listing 13-19. error. jsp

<html>
<head>

</head>
<body>
<%out.println("Error in updating Database");%>

</body>
</html>

You need to deploy the Ajax web application to the JBoss application server and access the
application from your browser.

When the build.xml script is run in Eclipse, an ajax.war web application gets copied to the
deploy directory of the JBoss application server. We showed how to run the build. xml file in Eclipse
in the “Setting Up the Eclipse Project” section.

Now you are ready to start the JBoss application server using the < jboss-4.0.2>/bin/run.bat
(or run.sh for Unix and Linux) file. The ajax.war web application gets deployed in the JBoss application
server. To test the web application, you need to go to http://localhost:8080/ajax/inputForm.jsp
in your browser. The inputForm. jsp returns the web page shown in Figure 13-4.

347



348 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

:/ /localhost:8080/ajax /inputForm.jsp - Microsoft In = |D|ﬂ

File Edit YWiew Fawvorites Tools Help

GBack + = - D) 2t | Qsearch (G Favorites P Media ®| Ey-SE >

Address I@ http:fflocalhost: 3080f sjaxfinputFarm. jsp j WGD | Links **

=l

Form for Catalog Entry

Catalog T I—

Journal I—

Publisher: I—

Edition —

Tite —

Author I—
Create Catalog |

/]
|&] Done ’_ ’_ ’_ E Local intranet A

Figure 13-4. Catalog entry input form

To validate a catalog ID value, specify a catalog ID field value. An HTTP request gets sent to the
server, and the XML response is returned to the browser-based user interface. If the catalog ID field
value is valid, the message “Catalog ID is Valid” gets displayed, as shown in Figure 13-5.

If a catalog ID field value is specified that is not valid, the message “Catalog ID is not Valid”
appears, and the Create Catalog button gets disabled, as shown in Figure 13-6. Also, the field values
for the catalog ID appear.



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

calhost:8080/ ajax/inputForm.jsp - Microsoft Inktel = |E||ﬂ

File Edit View Favorites Tools Help

$aBack v = - @ | Qusearch [GaFavorites meda B | B S = 7

Address I@ http: filocalhost: 80807 ajax finputFarm, jsp j WGD | Links **

=
Form for Catalog Entry

Catalog I[D: ld— Catalog ID 15 Valid
Journal: l—
Publisher: l—
Edition: l—
Title: —
Author: l—

E

|@ Done l_ l_ ’_ E Local intranet A
Figure 13-5. Specifying the catalog ID field value

calhost:8080/ajax,/inputForm.jsp - Microsoft Inte dglﬂ

File Edit “iew Favorites Tools Help |
GBack + = - @ it | Qhsearch [GgFavortes @Meda £% | S

Address I&j http:/flocalhost: 8080/ ajax/inputForm.jsp j @Go | Links **

[—|

Form for Catalog Entry

Catalog ID: W Catalog ID 1s not Valid
Journal: W
Publisher: lm
Edition: W
Title: [Managing <ML dat: T¢
Author: W
Create Catalog

=
[&] Dore [ [ B Local intranet v

Figure 13-6. Validating the input field catalog ID

349



350 CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX

To create a catalog entry, enter a valid catalog ID, and click the Create Catalog button, as shown
in Figure 13-7.

3 http://localhost:8080/ajax/inputForm.jsp - Microsoft = |E||ﬂ

File Edit View Favorites Tools  Help |

GBack + = - (D ﬁ| Qisearch [GFavorites GMeda % ‘ EA-S=
Address I@ http:{flacalhost: G080} ajax/inputFarm. jsp j @Go |Links £

E

Form for Catalog Entry

Catalog ID: W Catalog [D 15 Vald
Fournad Y TE—
Publisher: lm
Editon: W
Title: [a<pvalidation
Author: lm

C ate Catalog

E
|§j Done l_l_ l_ E Lacal intranet v

Figure 13-7. Creating a catalog entry

This creates a catalog entry in the database. If you retype a catalog ID value that was previously
used to create a catalog entry, the message catalog ID that is not valid gets displayed dynamically,
without even submitting the form, as shown in Figure 13-8. This is of course because while you are
typing in the catalog ID form field, the data is being asynchronously validated with the server, and as
soon as the data you type matches an existing catalog ID, the message “Catalog ID is not Valid” is
displayed.



CHAPTER 13 BUILDING WEB APPLICATIONS WITH AJAX 351

A http://localhost:8080/ajax/inputForm.jsp - Microsoft dglﬂ
File Edit View Favorites Tools Help |

¢=Back ~ = - ) it | Qsearch [GFavorites EMedia ¢4 | S
Address I@ http:flocalhost: 3080/ ajaxfinputFarm. jsp j @Go | Links *

=l

Form for Catalog Entry

Catalog ID: [catalogs Catalog ID is not Valid
Journal: W
Publisher: lm
Edition: W
Title [axpvaidation
Author: IW
Create Catalog |

[-
|®j Done ’_ ’_ ’_ E Local intranet 4

Figure 13-8. Validating a catalog entry previously defined

Summary

Ajax allows you to refresh the content of a web page dynamically without posting the web page to
the server. You can implement Ajax web techniques by combining the XML DOM, JavaScript, and
XMLHttpRequest technologies. W3C has introduced a Working Draft of the XMLHttpRequest object to
standardize the technology. Ajax has various helpful uses such as form validation, autocompletion,
and datarefreshes on a web page periodically. You implemented one of these applications, dynamic
form validation, in this chapter.






CHAPTER 14

Building XML-Based Web Services

When you want to buy a book from Amazon,! you go to Amazon’s website, find your book, and
order it. That is simple enough. Now, imagine you are an organization that orders lots of books from
Amazon, such as a large university library. You could certainly do your book selection manually.
However, what if Amazon offered a network service that a computer program could use to automat-
ically search, select, and add books to a shopping cart based on your selection criteria? It turns out
that Amazon indeed offers such a service!

In general, such network services are called web services.

The raison d’etre for web services is interoperability between loosely coupled applications. By
loosely coupled, we mean that the interacting applications are stand-alone applications and that the
interaction between applications happens via standards-based protocols.

This chapter pulls together a number of concepts from the entire book and presents a real-world
web service example. One of the challenges of presenting a real-world example is that the technologies
used in building it cannot be neatly circumscribed under topics covered in one book. Therefore, it
should not come as a surprise that this real-world web service example is at least peripherally based
on technologies beyond the scope of this book. We will, of course, let you know when we are dealing
with such technologies, and offer suggestions about where you can learn more about them.

Buckle up. It is going to be a bumpy ride!

Overview of Web Services

We started this book by noting that XML is a platform-independent means of representing structured
textual information, which makes it an ideal vehicle for exchanging information between loosely
coupled software applications. Since web services are essentially a standards-based approach to
interoperability, it is only natural that web services use XML in many aspects.

This chapter’s discussion of web services is based on the following W3C Recommendations and
Notes and other interoperability standards:

* XML-based technologies solve key technological issues of the web services architecture. XML 1.0,
XML Schema, and XPath 1.0, all of which we covered in Part 1 of this book, play a foundational
role in the web services technologies.

* SOAP 1.12 defines an XML-based messaging framework for web services interaction. SOAP 1.23
is the latest version of this messaging framework. In this chapter, we will primarily cover
SOAP 1.1. However, we will note the differences between SOAP 1.1 and SOAP 1.2.

1. Amazon is an online seller of books and other merchandise at http://www.amazon.com.
2. The SOAP 1.1 W3C Note is available at http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/.
3. The SOAP 1.2 W3C Recommendation is available at http://www.w3.0rg/TR/soap12.

353



354 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

» SOAP Messages with Attachments? defines how a SOAP 1.1 message is to be carried within a
Multipurpose Internet Mail Extensions (MIME) multipart-related message so that the normal
SOAP 1.1 message processing is preserved. We will cover SOAP Messages with Attachments in
this chapter.

e WSDL 1.1% is an XML-based language for formally describing web services. At the time of
writing this book, WSDL 1.1 is in widespread use, and WSDL 2.0 is a Candidate Recommen-
dation. In this chapter, we will confine our coverage to WSDL 1.1.

¢ Despite WSDL 1.1 and SOAP 1.1, interoperability between applications using web services is
still a problem. To alleviate this problem, the Web Services Interoperability (WS-I) organiza-
tion has defined the Basic Profile (BP)® 1.1 specification that attempts to clarify web services-
related W3C Notes and Recommendations. We will cover WS-1 BP 1.1 in this chapter.

¢ Universal Description, Discovery, and Integration (UDDI) is a WS-I BP 1.1-endorsed registry
for web services. A UDDI registry is analogous to the telephone white pages or yellow pages.
Applications can query a UDDI registry about a specific web service (like you query an online
white pages website) and, in response, obtain the location of a WSDL 1.1 document (like you
get a phone number from a white pages query) that formally describes the web service. Web
service registration and discovery using UDDI is an advanced topic and is beyond the scope
of this book. However, we will discuss UDDI in the context of the web services architecture.

All the web service-related Notes and Recommendations covered in this chapter are supported
in the Java API for XML-Based Web Services (JAX-WS) 2.07 specification, which is implemented in
Java Platform Enterprise Edition® (Java EE) version 5. In particular, JAX-WS 2.0 supports SOAP 1.1,
SOAP Messages with Attachments, WSDL 1.1, and WS-I BP 1.1.

Understanding the Web Services Architecture

In the following sections, we will discuss the overall web services architecture, first defining basic
web service concepts and then covering various web service architectural models.

Basic Web Service Concepts

You will start by looking at some basic web service concepts that will help you understand the rest of
this discussion.

Web Service Client Perspective

From a client perspective, a web service has the following key aspects:

* Aweb service is formally described through a WSDL 1.1 document. We will cover in detail
what is in a WSDL 1.1 document in the “Understanding WSDL 1.1” section, but for now, it is
sufficient to understand that a WSDL document defines an interface for a web service. For
example, an Amazon web service has its formal description available at http://soap.amazon.
com/schemas2/AmazonWebServices.wsdl.

The Soap Messages with Attachments W3C Note is available at http://www.w3.0rg/TR/SOAP-attachments.
The WSDL 1.1 W3C Note is available at http://www.w3.0rg/TR/wsdl.

The WS-I Basic Profile 1.1 specification is available at http://www.ws-1i.org/Profiles/BasicProfile-1.1.html.
More information about JAX-WS 2.0 is available at http://www.jcp.org/en/jsr/detail?id=224.

Java EE is available at http://java.sun.com/javaee/.

© NS e



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

» The web service network address defines a location where a web service is available on the
network; this location is specified as an HTTP URL. For example, the network address of an
Amazon web service is http://soap.amazon.com/onca/soap2.

 C(lient applications that want to use the web service may discover the location of the WSDL
1.1 document through a UDDI registry, or through other means, such as direct input.

* C(lient applications interact with the web service using SOAP 1.1 messages transported within
HTTP 1.0/1.1 messages.

Figure 14-1 shows web service interaction from a client perspective.

Input: WSDL 1.1 Document

HTTP URL Step 1: Query UDDI
registry for WSDL 1.1
document URL.

UDDI Registry

Step 1: Get WSDL 1.1
document URL from
input, or...

Step 2: Get WSDL 1.1 document WSDL 1.1

Document Location

Web Service Client [

Step 3: SOAP 1.1 messages with
web service—specific XML
document, embedded within
HTTP messages.

Web Service

Figure 14-1. Web service interaction from a client perspective

Agents and Services

From a logical viewpoint, a web service endpoint can be split into two parts:

e The first part is the service endpoint interface (SEI). The SEI is the web service contract with its
clients, analogous to a Java interface.

* The second part is the agent. The agent is a concrete software implementation of the SEI,
analogous to a Java class implementing a Java interface.

Providers and Requestors

A web service is provided by a provider entity. A provider entity can be an individual or an organi-
zation. A provider entity provides the web service through a provider agent. A provider agent is a
concrete software implementation of the web service SEI. For example, if Amazon provides a web
service, Amazon is the provider entity.

A web service is used by a requestor entity. A requestor entity can be an individual or an organiza-
tion. A requestor entity uses the web service through a requestor agent. A requestor agent is a software
component that uses the web service’s WSDL 1.1 document-based description to interact with the
web service. For example, any entity using Amazon’s web service would be the requestor entity.

You can implement both the provider agent and the requestor agent using the JAX-WS 2.0 APIs.

355



356

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Service Description

A provider entity describes a web service through a WSDL 1.1 document. You will learn about the
details of a WSDL 1.1 document in the section “Understanding WSDL 1.1.” For now, it is sufficient to
understand that a WSDL 1.1 document is capable of formally describing a service interface and
includes the endpoint HTTP URI address of the provider agent.

Service Semantics

It is important to note that the WSDL 1.1 document does not define service semantics. Service
semantics are defined either implicitly or explicitly through a verbal or written exchange between
a provider entity and a requestor entity. In some cases, the service semantics may be defined as a
legally binding contract between a provider entity and a requestor entity.

Web Service Architectural Models

The web services architecture is a multifaceted architecture. To simplify things, it is best to examine
each facet of this architecture in the context of a separate architectural model. So, we will cover the
following three web service architectural models individually:

¢ The message-oriented model
¢ The service-oriented model

e The resource-oriented model

Message-Oriented Model

All interaction between a web service and its client is based on the exchange of XML content encapsu-
lated within SOAP 1.1 messages, which are transported inside HTTP 1.0/1.1 messages. The message-
oriented model is focused on the structure, processing, and transmission of these XML-based messages.
However, this model is not concerned with the web service-specific content of a SOAP 1.1 message or the
semantics of a Web-based service. Looking through the prism of a message-oriented model, you can
observe the following key points:

¢ All agent-to-agent conversations during the use of a web service are built upon a one-way
exchange of a SOAP 1.1 message between a sender agent and a receiver agent. Of course, the
receiver at one moment can become a sender the next moment.

e ASOAP 1.1 message is contained in an envelope. Each envelope contains an optional header
and arequired body.

* ASOAP 1.1 message travels between a sender and a receiver over an HTTP message transport.
The reliable delivery of a message is the concern of the message transport.

¢ Areceiver must have a unique HTTP URI address so a sender can uniquely identify the receiver.

* You can define complex web service message exchange patterns on top of the basic one-way
exchange pattern.

Figure 14-2 summarizes the message-oriented model.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 357

Soap 1.1 message has a Soap 1.1 message has a
sender, which is an agent. sender, which is an agent.
Soap 1.1 message * The basic message exchange Soap 1.1 message

pattern is a one-way message
from a sender to a receiver.
* Complex message exchange

has an envelope. has an envelope.

Envelope may patterns are built on the basic Envelope may
have a header. one-way exchange pattern. have a header.
* Message correlation associates
Envelope must a message to a message Envelope must
have a body. exchange pattern. have a body.

Soap 1.1 message is transported and
embedded within an HTTP message.

o HTTP message transport delivers a SOAP 1.1 message.
o Areceiver has an HTTP URL address, so a sender can send it a message.
o Message reliability is a property of message transport.

Figure 14-2. Message-oriented model

Itis possible to build complex message exchange patterns based on the simple one-way exchange
pattern described in Figure 14-2. The most obvious message exchange pattern that follows naturally
from the one-way exchange pattern is the request-response pattern. Figure 14-3 shows both the
one-way pattern and the request-response pattern.

One-Way Messaging

Sender SOAP 1.1/HTTP Message Receiver
Agent Agent

A

Request-Response Messaging

Request
SOAP 1.1/HTTP Message _
Sender " Receiver
Agent Response Agent
P SOAP 1.1/HTTP Message

Figure 14-3. Message exchange patterns

The simple two-node patterns can be extended to multiple nodes, where a message travels from
an initial sender to an ultimate receiver through a number of intermediate nodes, as shown in
Figure 14-4.



358 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Request-Response Messaging with
Intermediate Sender/Receiver Nodes

SOAP 1.1/HTTP SOAP 1.1/HTTP SOAP 1.1/HTTP

»I Ultimate Receiver
< Agent Node

Initial Sender
Agent Node

Sender/Receiver
Agent Node

Sender/Receiver
Agent Node

Figure 14-4. Request-response messaging with intermediate agent nodes

The message-oriented model is the closest abstraction of physical reality, because a web service
interaction is essentially an exchange of XML documents encapsulated in SOAP 1.1 messages, which
are transported inside HTTP messages. However, it may not be the appropriate model from the
point of view of abstracting the essential elements of a web service interface. For that, the service-
oriented model exists, which we discuss next.

The Service-Oriented Model

In the service-oriented model, the focus is on the service provided by a provider agent and used by a
requestor agent. From the perspective of this model, you focus on the following aspects of a web service:

* A provider agent implements all the operations defined by the web service SEI

* Arequestor agent uses a service proxy to invoke an SEI operation, which, depending on the
operation, may return nothing, a response, or one or more faults.

Figure 14-5 summarizes the service-oriented model.

Requestor Agent

Service

D E— i
Proxy Provider Agent

Figure 14-5. The service-oriented model

This model is fairly simple to understand, but from a practical point of view, it says nothing
about how a requestor agent discovers or addresses the service provider agent. For that you need
to focus on the resource-oriented model, which is covered next.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Resource-Oriented Model
From this model’s perspective, a web service is a resource that can be consumed by a web service
client. Essential aspects of this model are as follows:

e A web service is a network-based resource identifiable through an HTTP URIL

* Aweb service resource is described through a WSDL 1.1 document.

* A web service resource may be registered with a UDDI registry.

* Aweb service resource may be discovered by querying a UDDI registry, as shown in Figure 14-1.

Now, you are ready to examine the details associated with the web service messaging frame-
work, WSDL, client-service interaction, and the JAX-WS 2.0 APIs that implement a complete web
service client-side and service-side protocol stack.

However, it is best to do all this in the context of example use case scenarios. So, in the next

section, we will explain the example use case scenarios that will provide a practical framework for
our discussion of SOAP 1.1, SOAP Message with Attachments, WSDL 1.1, and JAX-WS 2.0.

Example Use Case Scenarios

Imagine you want to build a document storage website. Naturally, users would expect to be able to
upload their documents to this website and retrieve them later, using a browser-based user interface.

However, you survey prospective and current users and find that in addition to a browser-based
user interface, they want a web service that will allow computer programs to interact with this website.
You give the issue some thought, and you come with the following four use case scenarios for this
web service:

* Uploading documents to a project

* Downloading documents from a project

* Getting information about all the projects owned by a user

* Removing documents from a project

You’ll now examine each use case in detail.

Uploading Documents to a Project

The first use case is uploading documents to a project under your account. In this use case scenario,
a ZIP file and a manifest file are sent to the web service for uploading the documents in the ZIP file
into a project in your account.

The motivation for this scenario is a program that could be configured to do the following:

1. Automatically select a set of documents from your desktop.

2. Zip the documents into a ZIP file.

3. Add a manifest to the ZIP file.

4. Upload the ZIP file documents into a project in your account, using the web service.

The manifest file will contain information about documents in the ZIP file that need to be put
into the project. The web service will do the following:

359



360 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

1. Add documents specified within the manifest to the requested project in your account.

2. Ifno such project exists, the web service will create one automatically; the same rule applies
to any folders under the project.

3. Once the documents are uploaded into a project, the web service will respond with a man-
ifest that shows up-to-date contents of the updated project.

Downloading Documents from a Project

The second use case is downloading documents from a project. In this use case scenario, the
following happens:

1. A manifest file specifying what you want to download from a project is sent to the web
service.

2. The web service is expected to respond with a ZIP file that contains the requested documents.

The motivation for this scenario is a program that could be configured to automatically send a
request manifest to the web service with a request for documents to be downloaded and then unzip
the returned ZIP file.

Getting Information About All Projects

The third use case provides information about the contents of all the projects owned by a user. The
requested information can be restricted to just a list of projects, just a list of folders within all the
projects, or information about all the documents in all the projects.

Removing Documents from a Project

The fourth use case is the ability to delete documents from a project. Again, the information of what
to delete is sent in a manifest file; in this case, no response is expected.

Finally, for security reasons, all requests carry your email and password.

Now you are ready to look at the SOAP 1.1 messaging framework that will convey the web service
interaction messages related to the example use case scenarios.

Understanding the SOAP 1.1
Messaging Framework

We will discuss how to build the web service for the use case scenarios in the “Using JAX-WS 2.0”
section. For now, imagine that a provider agent for the web service already exists and a requestor
agent (web service client) that can use this web service also already exists. All web service interaction
is, of course, SOAP 1.1 messaging. So, what do these SOAP 1.1 messages look like? We will go into the
SOAP 1.1 messaging details shortly; for now we’ll provide a simple example of the SOAP 1.1 message
exchange.

Simple SOAP 1.1 Message Exchange

In this example, you will see a complete request-response message exchange pattern in the context
of the third use case, getting information from all projects. We are discussing the third use case
because it is complex enough that we can show a nontrivial exchange, yet it is simple enough so as
to not overwhelm you.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Request Message

Imagine that the web service client requests information about all the projects owned by a user but
restricts the information detail to just project names. Listing 14-1 shows the complete SOAP 1.1
request message for this use case.

Listing 14-1. SOAP 1.1 Request Message for Third Use Case

<?xml version="1.0" ?>

<soapenv:Envelope
xmlns:nsi="http://www.apress.com/xmljava/webservices/schemas"
xmlns:ns2="http://www.apress.com/xmljava/webservices/definitions"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<soapenv:Header>
<nsi:userInfo>
<email>foo@acme.com</email>
<pwd>bar</pwd>
</ns1:userInfo>
</soapenv:Header>

<soapenv:Body>
<nsil:projectsDetail>
<folders>false</folders>
<documents>false</documents>
</nsi:projectsDetail>
</soapenv:Body>

</soapenv:Envelope>

If you examine the message in Listing 14-1 from an intuitive standpoint, you may notice the
following points:

» Apparently, the soapenv prefix associated with the http://schemas.xmlsoap.org/soap/
envelope/ namespace defines SOAP 1.1 constructs.

* Theroot element is soapenv:Envelope, and it contains two subelements: soapenv:Header and
soapenv:Body.

* You may notice that the soapenv:Header element has a single child element named ns1:userInfo,
which is qualified with the ns1 prefix in the http://www.apress.com/xmljava/webservices/
schemas namespace. The child elements of ns1:userInfo contain email (foo@acme.com) and
password (bar) information related to the user.

* You may notice that the soapenv:Body element has a single child element named
nsi:projectsDetail. The child elements of ns1:projectsDetail appear to be boolean
switches that indicate you do not want any information about folders (<folders>false</
folders>) or documents (<documents>ftalse</documents>) within the projects, which
conforms with your intent of getting information about project names owned by the user.

Operation

At this point you may be wondering when the provider agent receives this message, how does it
know what operation this message is requesting since, apparently, nowhere in the message does it
say that the requestor wants information about all projects that a user owns?

361



362

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

From an intuitive standpoint, the answer to this question is that the provider deciphers the
operation requested by a message by looking at the content of the soapenv:Body element, which in
Listing 14-1 is a single ns1:projectsDetail element.

Since the content of the soapenv:Body element implies a specific operation, the content must be
unique across all types of messages received by this web service. For example, you cannot have another
use case within the example web service that receives a message with a single ns1:projectsDetail
element as the child element of the soapenv:Body element.

Response Message

Listing 14-2 shows the response to the request message in Listing 14-1.

Listing 14-2. SOAP 1.1 Response Message for Third Use Case

<?xml version="1.0" ?>

<soapenv:Envelope
xmlns:nsi="http://www.apress.com/xmljava/webservices/schemas"
xmlns:ns2="http://www.apress.com/xmljava/webservices/definitions"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<soapenv:Body>
<nsil:projects>
<project createdOn="2006-06-27T19:00:35.046-04:00"
email="foo@acme.com"
lastUpdated="2006-06-27T719:00:35.187-04:00"
name="testproject.zip" />
</nsi:projects>
</soapenv:Body>

</soapenv:Envelope>

If you examine the response message, again from an intuitive standpoint, you may notice the
following points:

¢ The response message has no soapenv:Header element. This suggests the soapenv:Header
element must be optional in a SOAP 1.1 message, which it is.

* Theresponse message soapenv:Body hasannsi:projects child element, which presumably is
a list of all the projects.

e Thensi:projects element has a single ns1:project child element with name equal to
testproject.zip. It also shows additional information about when the project was created
(createdOn) and last updated (lastUpdated). Presumably, foo@acme.com owns the project.

Having looked at an example SOAP 1.1 message exchange based on the request-response
message pattern, you are ready to learn more about SOAP 1.1 messaging.

SOAP 1.1 Messaging (WS-IBP 1.1)

In this section, you will examine SOAP 1.1 messaging details but filtered through WS-IBP 1.1. In our
opinion, there is no point in ignoring WS-I BP 1.1, since the whole idea behind using web services is
interoperability.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 363

SOAP 1.1 is an XML-based messaging framework for exchanging structured information between
peer nodes in a network-based distributed environment. SOAP is designed to be extensible. By
extensible, we mean that higher-level services, such as security or transactions, can be layered upon
the basic SOAP messaging framework, without having to change the underlying structural rules for
a SOAP message. SOAP implies no particular semantic model. Because it is XML-based, is extensible,
and implies no particular semantic model, it’s ideal for use in web services messaging.

For the purpose of this discussion, we will associate the soapenv prefix with the http://schemas.
xmlsoap.org/soap/envelope/ namespace, keeping in mind of course that the choice of the soapenv
prefix is completely arbitrary.

Basic Concepts

The most important concepts of the SOAP 1.1 messaging framework are as follows:

A SOAP 1.1 message is a one-way message, going from an initial sender to an ultimate receiver,
possibly via intermediate nodes.

A SOAP 1.1 message is contained in an envelope.
The envelope contains an optional header and a mandatory body.

The header child elements, also known as header blocks, can be targeted at anybody along the
message path.

The application data is contained as well-formed XML content within the body element.

The body content is generally targeted at the ultimate receiver.

You'll take a closer look inside a SOAP 1.1 message.

SOAP 1.1 Envelope

A SOAP 1.1 message is an XML document with soapenv:Envelope as its root element. The structure
of a SOAP 1.1 message XML document that conforms to WS-I BP 1.1 must adhere to the following rules:

The document must not contain any processing instructions or a document type declaration.
If you are not sure what these are, review the XML primer in Chapter 1.

The soapenv:Envelope element should not contain the namespace declaration
xmlns:xml="http://www.w3.0rg/XML/1998/namespace"”.

soapenv:Envelope can have an optional soapenv:Header child element. If present,
soapenv:Header must be the first immediate child of the soapenv:Envelope element.
All immediate child elements of soapenv:Header must be namespace qualified.

soapenv:Envelope must have a mandatory soapenv:Body element. It must follow the
soapenv:Header element if the soapenv:Header element is present, or it must be the first
immediate child of the soapenv:Envelope element. Immediate child elements of the
soapenv:Body element must be namespace qualified.

soapenv:Body must be the last child element of the soapenv:Envelope element.

soapenv:Envelope, soapenv:Header, and soapenv:Body must not contain any attributes qualified
in the http://schemas.xmlsoap.org/soap/envelope/ namespace.

The SOAP 1.1 messages shown in Listings 14-1 and 14-2 are examples of WS-IBP 1.1-conformant
messages.



364

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

SOAP 1.1 Encoding Style

The header blocks and the soapenv:Body content can be whatever the web service requires, as long
as the header blocks and the soapenv:Body content are namespace qualified and are, of course, well-
formed XML.

This raises the obvious question, how should the header blocks and the soapenv:Body content
be encoded? The answer, as per WS-IBP 1.1, is simple: neither the header blocks nor the soapenv:Body
content should be encoded. WS-IBPI 1.1 prohibits the use of any encoding style, including SOAP 1.1
encoding.?

All header blocks and soapenv:Body content must be serialized literally, which means the header
blocks and soapenv:Body content must conform to a schema definition. In case you are wondering,
does this lack of an encoding style limit the ability of web services in any way? The answer, simply, is
no. In fact, the only reason for the existence of SOAP 1.1 encoding is that at the time the SOAP 1.1
W3C Note was being composed, the XML Schema language was not completed.

The detailed rules related to encoding are as follows:

* Anyelementin the http://schemas.xmlsoap.org/soap/envelope/ namespace must not
contain the soapenv:encodingStyle attribute.

¢ Anyimmediate child or grandchild of the soapenv:Body element must not contain any
soapenv:encodingStyle attribute.

Now you are ready to take a closer look at each of the soapenv:Envelope child elements.

SOAP 1.1 Header

The main purpose of the soapenv:Header element is extensibility. Web services need different types
of capabilities that overlay the basic web services interaction. These capabilities could be services
related to security,1? transaction management, or orchestration of complex business processes
based on elementary web services. Information related to these capabilities resides in the child
elements of the soapenv:Header element; these immediate child elements are called header blocks.

In the following discussion, keep in mind that multiple intermediate nodes may process a SOAP 1.1
message, before it reaches the ultimate receiver, as shown in Figure 14-4. The intermediate nodes
act as receivers as well as senders, switching their status as needed. In fact, these intermediate nodes
and the ultimate receiver collaborate to implement capabilities such as security or transaction
management.

This raises the obvious question, if the information related to these infrastructure services is
carried within the soapenv:Header header blocks, then how is an intermediate node recipient to
know what header blocks are intended for it, as opposed to some other node along the message
path? This is where header attributes, which are described next, enter the picture.

Header Attributes

SOAP 1.1 defines certain attributes that can be associated only with header blocks to indicate how a
recipient of this message should process the associated header blocks. These attributes are as follows:

9. The SOAP 1.1 encoding rules are part of SOAP 1.1 Recommendation (http://www.w3.0rg/TR/2000/
NOTE-SOAP-20000508/).

10. The WS-Security 1.1 OASIS standard is an example of an extensible capability added to support all aspects of
security (http://www.oasis-open.org/committees/tc_home.php?wg abbrev=wss).



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

* The soapenv:actor attribute on the header block indicates the logical function or role that the
recipient must play in processing this header block. If an intermediate recipient node under-
stands the specified role, then the header block is intended for its consumption.

e The soapenv:mustUnderstand attribute on a header block indicates whether, assuming the
recipient fits the role specified by the soapenv:actor attribute, the processing of a particular
header child element is mandatory by a recipient.

The soapenv:actor Attribute The value of a soapenv:actor attribute is a URI that indicates the logical
role that the recipient must assume in processing the associated header block. A special URI,
http://schemas.xmlsoap.org/soap/actor/next/, denotes the logical role of being the next node
along the message path. Omitting this attribute implies that this child element should be processed
by the ultimate receiver.

Consider the following example soapenv:Header element:

<soapenv:Header>
<ns1:userInfo
soapenv:actor="http:// www.apress.com/xmljava/webservices/auth">
<email>foo@acme.com</email>
<pwd>bar</pwd>
</ns1:userInfo>
</soapenv:Header>

This example soapenv:Header element has a single header block, ns1:userInfo, which hasa
soapenv:actor attribute set to the http://www.apress.com/xmljava/webservices/auth URIL This
means if a recipient fits the implied role associated with the specified URI, it is expected to process
the ns1:userInfo header block.

An intermediate node that processes a header block must remove the header block from the
soapenv:Header element. If an intermediate node processes a header block but also wants the header
block to be processed by another node along the message path, it may modify and add the header block
to the soapenv:Header element. You can remove and then add a header block simply by modifying
the header block in place.

The soapenv:mustUnderstand Attribute This attribute can have a value of only 0 or 1. Omitting this
attribute implies a value of 0. If this attribute is specified on a header block with the value 1, it means
that if the recipient can assume the role implied by the soapenv:actor attribute of the header block,
then the recipient must process the header block.

Consider the following revised example soapenv:Header element that you saw earlier:

<soapenv:Header>

<ns1:userInfo
soapenv:mustUnderstand="1"
soapenv:actor="http://www.apress.com/xmljava/webservices/auth">
<email>foo@acme.com</email>
<pwd>bar</pwd>

</ns1:userInfo>

</soapenv:Header>

If the recipient of this message can assume the http://www.apress.com/xmljava/webservices/
auth role (whatever that means semantically), it must process the ns1:userInfo header block. We
will discuss in the “SOAP 1.1 Processing Model” section what must happen if a recipient is unable to
live up to such an obligation.

365



366

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

SOAP 1.1 Body

Other than that all the immediate child elements of the soapenv:Body element must be namespace
qualified and be well-formed XML elements, they can contain whatever content the web service
deems appropriate; SOAP 1.1 has nothing to say on this issue. Recall that, as per WS-I BP 1.1, no
encoding scheme, including SOAP 1.1 encoding, is allowed in these child elements. All soapenv:Body
child elements must conform to a schema definition.

SOAP 1.1 Fault

The soapenv:Fault element, if it occurs, must be an immediate child element of the soapenv:Body
element, and it must not occur more than once. It is designed to indicate error or status information
related to SOAP 1.1 message processing. A soapenv:Fault element can have only the subelements
shown in Table 14-1; these elements should not be namespace qualified because they are local to the
soapenv:Fault element.

Table 14-1. SOAP 1.1 Fault Subelements

Fault Value Mandatory? Description

Subelement

faultcode Namespace- Yes This is intended to be consumed
qualified name programmatically. SOAP 1.1 defines

special fault codes, which are shown
in Table 14-2.

faultstring Text Yes This is a human-readable description
of fault, not intended for program-
matic consumption.

faultfactor URI Mandatory for This identifies the source of fault.
intermediate nodes

detail Element Mandatory if It must contain information related
fault is because only to the error in processing the
of processing of soapenv:Body element; it must not
the soapenv:Body contain information related to
element the error in processing the

soapenv:Header element. It can
contain zero or more subelements
that may or may not be namespace
qualified. It may have zero or

more attributes. Subelements

and attributes must not be in the
http://schemas.xmlsoap.org/soap/
envelope/ namespace.

Table 14-2 shows the special SOAP 1.1 fault codes; all these fault codes are in the http://schemas.
xmlsoap.org/soap/envelope/ namespace.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Table 14-2. SOAP 1.1 Fault Codes

Name Description

VersionMismatch The SOAP envelope has an invalid namespace, meaning something other
than http://schemas.xmlsoap.org/soap/envelope/.

MustUnderstand The soapenv:mustUnderstand value is set to 1 on a soapenv:Header child
element and the recipient fits the soapenv:actor role associated with the
child element, but the recipient does not understand how to process
the child element.

Client Message processing failed because the client sent incorrect information.
The client must not resend the same information again.

Server Message processing failed because the server, for whatever reason, was not
able to successfully process the message.

As an example of a SOAP 1.1 fault message, if you were to type the Amazon web service
http://soap.amazon.com/onca/soap2 URL in a browser, you would see the SOAP fault message
shown in Listing 14-3 returned. Try it!

Listing 14-3. SOAP Fault Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.0rg/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/1999/XMLSchema">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode xsi:type="xsd:string">SOAP-ENV:Client</faultcode>
<faultstring xsi:type="xsd:string">Bad Request</faultstring>
<detail xsi:type="xsd:string">The request contains no SOAP message.</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The returned fault in Listing 14-3 makes perfect sense, because if you type the web service URL
in a browser, all you are doing is sending a simple HTTP GET message containing no SOAP 1.1 message
inside it, whereas the web service is obviously expecting to receive an appropriately formatted
SOAP 1.1 message.

Now you are ready to look at the SOAP 1.1 processing model.

SOAP 1.1 Processing Model

SOAP 1.1 defines only a simple one-way message exchange pattern, going from an initial sender to
an ultimate receiver, possibly via intermediate nodes. However, more complex message patterns
such as the request-response pattern can be built upon the one-way pattern. The message processing
rules are as follows:

367



368

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

¢ Anyintermediate node must process a header block, if the intermediate node can assume the
soapenv:actor role specified for the header block and if the soapenv:mustUnderstand attribute for
the header block is set to 1. Failure to process such a header block must return a soapenv:Fault
message with a soapenv:MustUnderstand fault code subelement.

¢ Any intermediate node must remove header blocks processed by it, before forwarding the
message to the next node along the message path. An intermediate node may of course add
back a header block after processing and removing it, if it needs to target the header block at
another node along the message path.

* The generally expected convention is that only the ultimate receiver is expected to process
the soapenv:Body element, although there is nothing to that effect in SOAP 1.1 or in WS-I1 BP
1.1. If you choose to violate this convention, consider its implications carefully.

e ASOAP 1.1 fault can be returned only if a response is expected. If any node returns a fault, that
fault must be propagated back to the initial sender, in place of a response.

In the next section, you will look at the important differences between SOAP 1.1 and SOAP 1.2.

SOAP 1.2 and SOAP 1.1 Differences

Remember, WS-I BP 1.1 does not explicitly support SOAP 1.2, so we do not recommend it at this
point. However, at some point in the near future, it will be widely adopted, so itis important to famil-
iarize yourself with the general differences between SOAP 1.1 and SOAP 1.2.

The most notable difference between SOAP 1.1 and SOAP 1.2 is that the SOAP 1.2 processing
model is much more explicit than the SOAP 1.1 processing model. In fact, SOAP 1.2 has adopted
many of the processing model requirements specified in WS-I BP 1.1 to improve interoperability. So,
from the point of view of improving interoperability, SOAP 1.2 is almost the same as SOAP 1.1 plus
WS-IBP 1.1.

Other important differences between SOAP 1.1 and SOAP 1.2 are as follows:

¢ Themostimportant difference is of course that SOAP 1.2 is associated with a new namespace:
http://www.w3.0rg/2003/05/so0ap-envelope. This means a SOAP 1.1 node receiving a SOAP 1.2
message will generate a VersionMismatch SOAP fault. A SOAP 1.2 node may choose to process
a SOAP 1.1 message as a SOAP 1.1 message or generate a VersionMismatch SOAP fault.

¢ SOAP 1.2 introduces the concept of SOAP roles. At a given point of time, a SOAP node assumes
a specific SOAP 1.2 role, which is identified by a URI. Three special roles—next, none, and
ultimateReceiver—are defined in SOAP 1.2; each of those roles is associated with a unique
URI. The SOAP 1.2 role attribute replaces the SOAP 1.1 actor attribute for Header child elements.
The importance of this change is that all along, the semantics associated with the SOAP 1.1
actor attribute were what one would normally ascribe to a role; SOAP 1.2 finally clarifies this
issue by changing the name of the attribute to role.

e SOAP 1.2 introduces a relay attribute that can be associated with a Header child element. This
relay attribute suggests rules for forwarding a Header child element at an intermediate node,
if the Header child is not understood by the intermediate node and if the mustUnderstand
attribute for the child element is not set to true.

Next, you will look at how SOAP 1.1 messages are carried within MIME multipart-related messages.

SOAP 1.1 Message with Attachments

You'll now revisit the use case scenarios to see what the request-response message exchange for
the second use case, downloading a project, looks like. Listing 14-4 shows the request message for
downloading a project.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 369

Listing 14-4. Downloading a Project SOAP 1.1 Request Message

<?xml version="1.0" ?>
<soapenv:Envelope
xmlns:nsi="http://www.apress.com/xmljava/webservices/schemas"
xmlns:ns2="http://www.apress.com/xmljava/webservices/definitions"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<soapenv:Header>
<nsi:userInfo>
<email>foo@acme.com</email>
<pwd>bar</pwd>
</nsi:userInfo>
</soapenv:Header>

<soapenv:Body>
<nsil:project
createdOn="2006-06-28T20:51:23.937-04:00"
email="foo@acme.com"
lastUpdated="2006-06-28T20:51:23.968-04:00"
name="testproject.zip" >
</nsi:project>
</soapenv:Body>
</soapenv:Envelope>

Listing 14-5 shows the response message to the request message shown in Listing 14-4.

Listing 14-5. Downloading a Project SOAP 1.1 Response Message

------ =_Part_2_16020374.1151542284234
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:ns1="http://www.apress.com/xmljava/webservices/schemas"
xmlns:ns2="http://www.apress.com/xmljava/webservices/definitions">
<soapenv:Body>
<nsil:manifest
name="testproject.zip"
lastUpdated="2006-06-28T720:51:23.968-04:00"
email="ajay_ vohra@yahoo.com"
createdOn="2006-06-28T20:51:23.937-04:00">
<folder
location="popuptest/WEB-INF/"
lastUpdated="2006-06-28T20:51:24.000-04:00"
createdOn="2006-06-28T20:51:23.968-04:00">
<document name="weblogic.xml"
lastUpdated="2006-06-28T20:51:24.000-04:00"
createdOn="2006-06-28T20:51:24.000-04:00">
</document>
<document



370

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

name="web.xml"
lastUpdated="2006-06-28T720:51:23.984-04:00"
createdOn="2006-06-28T20:51:23.984-04:00">
</document>
</folder>
</nsil:manifest>
</soapenv:Body>
</soapenv:Envelope>
------ = Part_2_16020374.1151542284234
Content-Type: application/octet-stream
Content-ID: <zip=38edc2fb-8e13-4a5d-b3cc-7452edd30ad6@jaxws.sun.com>
Content-transfer-encoding: binary

------ = Part_2_16020374.1151542284234—

If you examine the response message in Listing 14-5, you'll notice it isa MIME multipart-related
message. The first part contains a SOAP 1.1 message document, and the second part contains binary
content (we have deleted the binary content from Listing 14-5) associated with downloaded ZIP file.
The SOAP 1.1 message part and the related parts form a SOAP 1.1 message package. Within a SOAP
1.1 message package, a core part contains the SOAP 1.1 message, and one or more related parts
contain attachments. In the “Understanding WSDL 1.1” section, you will see how an abstract WSDL
1.1 message definition is bound to a concrete MIME multipart-related message.

Understanding WSDL 1.1

Whenever you have to build a web service, the first step you need to take is to formally describe the
web service ina WSDL 1.1 document. Although it is possible to reverse engineer a WSDL 1.1 document
from Java classes, in our opinion, such reverse engineering is adequate only for building trivial web
services, perhaps for quick prototyping. The reverse-engineering option seriously limits the flexi-
bility you need to describe nontrivial, real-world web services. So, we will not discuss it any further
in this chapter.

We describe the overall structure of a WSDL 1.1 document next.

WSDL 1.1 Document Structure

AWSDL 1.1 document is an XML document that conforms to the WSDL 1.1 schema, which is available
at http://schemas.xmlsoap.org/wsdl/. The WSDL 1.1 schema location also defines the WSDL 1.1
namespace. Assuming the wsd1 prefix for the WSDL 1.1 namespace, the root element of a WSDL 1.1
documentiswsdl:definitions.

The wsdl:definitions element contains the following child elements:

* Thewsdl:types element defines data type definitions using the XML Schema language. In
other words, the XML content of wsdl: types element is a schema definition.

* Thewsdl:message element defines an abstract message type used in web service interaction.
Each wsdl:message consists of one or more wsdl:part elements, whereby each wsd1:part is
based on either a schema element or a schema type, defined within wsdl:types. The
wsdl:definitions element can contain one or more wsdl:message elements.

e Thewsdl:portType element defines an abstract service interface. Each wsdl:portType element
can contain one or more wsdl:operation elements. However, each wsdl:operation element
within awsdl:portType must have a unique value for its name attribute.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

e Awsdl:operation element is an abstract definition of a service operation. Each wsdl:operation
contains a combination of wsd1l:input, wsdl:output, and wsdl:fault elements; each of these
elements is a message component that is part of the message exchange pattern used by
wsdl:operation.

e Eachwsdl:input, wsdl:output, and wsdl:fault element is based on awsdl:message element.
If awsdl:operation uses a request-response message exchange pattern, it must specify a
wsdl:input element and awsdl:output element, and possibly one or more wsdl:fault
elements. If awsdl :operation uses a one-way message exchange pattern, it must specify a
single wsd1l:input element.

e Since awsdl:portType element defines an abstract service interface, it needs to be mapped to
a messaging protocol and a transport protocol. Each wsdl:portType is recursively mapped
to a messaging protocol and a transport protocol in awsdl:binding element, which is a child
ofwsdl:definitions.

e Eachwsdl:portType abstract interface is mapped to a concrete network endpoint address
through awsdl :port element. Awsdl :port element is defined within awsdl:service element,
which is a child of wsd1:definitions.

Listing 14-6 shows the basic outline of a WSDL 1.1 document.

Listing 14-6. Basic Outline of a WSDL 1.1 Document

<wsdl:definitions
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<!-- schema elements or schema types -->
</wsdl:types>

<!-- One or more abstract message types -->

<wsdl:message name="...">

<!-- One or more message parts -->
<wsdl:part element="..." name="..." type="...">

<!-- Based on either a schema element or a schema type -->
</wsdl:part>

</wsdl:message>

<!-- one or more abstract port type interfaces -->
<wsdl:portType name="...">

<!-- One or more abstract operations, but name should be unique -->
<wsdl:operations name="...">
<!-- Request must have an input -->
<wsdl:input message="..."

</wsdl:input>

name="...">

<!-- Optional response contains one output element
and zero or more fault elements -->

<wsdl:output message="..." name="...">
</wsdl:output>
<wsdl:fault message="..." name="...">

3n



372 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

</wsdl:fault>
</wsdl:operations>

</wsdl:portType>

<wsdl:binding name="..." type="...">
<!-- Maps the port type to a messaging

and a transport protocol -->
</wsdl:binding>

<wsdl:service name="..." >

<!-- One or more ports -->

<wsdl:port binding="..." name="...">

<!-- Binds a port type binding to a network endpoint address -->
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

In the next section, you will examine an example WSDL 1.1 document.

Example WSDL 1.1 Document

In our opinion, if you are building a web service, the only way to start is to first constructa WSDL 1.1
document. To build the example web service thatimplements all the use case scenarios, you need to
construct a WSDL 1.1 document that formally describes the example web service. We will show you
how to do that step by step; we describe these steps in detail in the following sections:

Declare the relevant namespaces.

Define a schema in a separate document.

Import the schema into a WSDL 1.1 document.

Define message types used by the web service.

Define the web service interface (port type), including all the operations.

Define the binding of port type to the SOAP 1.1/HTTP messaging and transport protocols.

N o e ~ o bh =

Define the port that binds the web service binding to the endpoint address.

Namespace Declarations

The first step you want to take is to declare all the namespace declarations you will need in this
document:

e The WSDL 1.1 language constructs are defined in the http://schemas.xmlsoap.org/wsdl/
namespace, and you will use the wsd1 prefix with this namespace.

* The target namespace for the document will be http://www.apress.com/xmljava/webservices/
definitions, which is entirely arbitrary. You will use the defs prefix with this namespace.

¢ The namespace for the XML Schema language is http://www.w3.0rg/2001/XMLSchema, and
you will use the xsd prefix with this namespace.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

* The namespace for MIME constructs is http://schemas.xmlsoap.org/wsdl/mime/, and you
will use the mime prefix with this namespace.

The WSDL 1.1 to SOAP binding is specified in the http://schemas.xmlsoap.org/wsdl/soap/
namespace in the soap prefix.

You will be defining your own schema types, and you will use the http://www.apress.com/
xmljava/webservices/schemas namespace for the schema types. You will use the types prefix

with this namespace.

The root wsdl:definitions element of the WSDL 1.1 document with the relevant namespace

declarations is as follows:

<?xml version='1.0' encoding="UTF-8' ?>

<wsdl:definitions
targetNamespace="http://www.apress.com/xmljava/webservices/definitions"
xmlns:defs="http://www.apress.com/xmljava/webservices/definitions"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:types="http://www.apress.com/xmljava/webservices/schemas"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

</wsdl:definitions>

Schema Definition

In writing any but the most trivial of WSDL 1.1 documents, you will need schema data types. Although it
is not a must, it is best to define these data types within a separate schema file and the schema file
imported within the WSDL 1.1 document. Separating the schema definition from the WSDL 1.1
document is highly recommended, both for maintenance and for reuse. For the example web
service, define the schema definition shown in Listing 14-7 in a separate file named types.xsd.

Listing 14-7. Schema Types for Example Web Service in types.xsd

<?xml version='1.0' encoding="UTF-8' ?>

<xsd:schema
targetNamespace="http://www.apress.com/xmljava/webservices/schemas"
xmlns="http://www.apress.com/xmljava/webservices/schemas"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema

http://www.nubean.com/schemas/schema.xsd" >

<xsd:complexType name="documentInfo" >
<xsd:attribute name="name" type="xsd:string" use="required" ></xsd:attribute>

<xsd:attribute name="createdOn"
type="xsd:dateTime" use="optional" >
</xsd:attribute>
<xsd:attribute name="lastUpdated"
type="xsd:dateTime" use="optional" >
</xsd:attribute>
</xsd:complexType>

373



374 CHAPTER 14

BUILDING XML-BASED WEB SERVICES

<xsd:complexType name="folderInfo" >

<xsd:sequence>

<xsd:element maxOccurs="unbounded"

type="documentInfo" >
</xsd:element>
</xsd:sequence>

minOccurs="0

<xsd:attribute name="location"

type="xsd:string"
</xsd:attribute>

use=

"required" >

<xsd:attribute name="createdOn"

type="xsd:dateTime"
</xsd:attribute>

use="optional" >

<xsd:attribute name="lastUpdated"

type="xsd:dateTime"
</xsd:attribute>
</xsd:complexType>

<xsd:complexType name="proj
<xsd:sequence>

use="optional" >

ectInfo" >

<xsd:element maxOccurs="unbounded"

minOccurs="0
</xsd:element>
</xsd:sequence>

<xsd:attribute name="name"

name="folder"

type="folderInfo" >

type="xsd:string"

<xsd:attribute name="createdOn"

type="xsd:dateTime"
</xsd:attribute>

use="optional"

>

<xsd:attribute name="lastUpdated"

type="xsd:dateTime"
</xsd:attribute>

use="optional"

>

<xsd:attribute name="email"

type="xsd:string"
</xsd:attribute>
</xsd:complexType>

<xsd:element name="manifest"

<xsd:element name="project"
<xsd:element name="remove"

<xsd:element name="projects"
<xsd:complexType>
<xsd:sequence>

<xsd:element maxOccurs="unbounded"
type="projectInfo" >

name="project"
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

use=

"required" >

type="projectInfo" ></xsd:element>
type="projectInfo" ></xsd:element>
type="projectInfo" ></xsd:element>

>

minOccurs="0"

name="document"

use="required" ></xsd:attribute>



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

<xsd:element name="projectsDetail" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="folders" type="xsd:boolean" ></xsd:element>
<xsd:element name="documents" type="xsd:boolean" ></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="userInfo" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="email" type="xsd:string" ></xsd:element>
<xsd:element name="pwd" type="xsd:string" ></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="authDetail" >
<xsd:complexType>
<xsd:sequence>
<xsd:any></xsd:any>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="authScope" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="scope" type="xsd:string" ></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="faultDetail" >
<xsd:complexType>
<xsd:sequence>
<xsd:element minOccurs="1" name="major" type="xsd:string" ></xsd:element>
<xsd:element minOccurs="0" name="minor" type="xsd:string" ></xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

We will not describe this schema definition in great detail. By now, you should be familiar with
schema constructs; if you need to review this material, please refer to Chapter 1. Briefly, the schema
in Listing 14-7 defines data types for use in the example WSDL 1.1 document; these data types include
the following:

¢ The userInfo schema type contains email and password information.

* The projectInfo schema type contains information about a project.

375



376 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

e The project, remove, and manifest elements are all of type projectInfo.
* The projects schema element contains information about a list of projects.

e The projectsDetail schema element contains information about what type of elements
should be included in returned content when getting information about all the projects.

¢ The folderInfo schema type contains information about folders, and they are nested
within projectInfo.

¢ The documentInfo schema type contains information about documents, and they are nested
within folderInfo.

e The authScope schema element defines the authentication scope.

¢ The authDetail schema element defines the arbitrary authentication data that may be sent
with userInfo. This is an example of extensibility using xsd:any.

You should have no problem deciphering the structure of each of these schema elements or
types by examining the schema shown in Listing 14-7.

Schema Import

You will refer to the xsd: complexType definitions and the xsd:element declarations shown in
Listing 14-7 within the WSDL 1.1 document, so the first step you need to take within your WSDL 1.1
document is to import the schema definition, which is assumed to be defined in a file named
types.xsd. The schema import within the WSDL document is as follows:

<wsdl:types>
<xsd:schema>
<xsd:import
namespace="http://www.apress.com/xmljava/webservices/schemas"
schemalocation="types.xsd" >
</xsd:import>
</xsd:schema>
</wsdl:types>

Abstract Message Definitions

As you have already seen, all web service interactions involve the exchange of messages. So, of
course, in the WSDL 1.1 document, you have to define the abstract messages used by the example
web service. Through the appropriate wsd1:binding definition, you will later map these abstract
messages to the soapenv:Body content.

Not surprisingly, these messages are based on the schema elements defined within the schema
shown in Listing 14-7; the element attribute of a wsd1l:part denotes a schema element in the types
namespace. For example, the abstract request message for getting all the projects for a user, GetProjects,
is as follows:

<wsdl:message name="GetProjects" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:projectsDetail” name="detail" ></wsdl:part>
</wsdl:message>

The GetProjects abstract message has two parts:

¢ The first part is based on the types:userInfo schema element.

¢ The second part is based on the types:projectsDetail schema element.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 377

Each wsdl:message element contains one or more wsdl:part elements. The wsdl:message
names and the wsd1l:part names are completely arbitrary but should attempt to impart some infor-
mation about web service semantics.

Some wsdl:part elements are based on schema elements defined within the schema shown in
Listing 14-7, such as types:manifest; other wsdl:part elements are based on built-in schema types,
such as xsd:base64Binary, as shown in the following DownloadZip message:

<wsdl:message name="DownloadZip" >
<wsdl:part element="types:manifest" name="manifest" ></wsdl:part>
<wsdl:part name="zip" type="xsd:base64Binary" ></wsdl:part>
</wsdl:message>

The xsd:base64Binary data type refers to binary data in Base 64 encoding.
Listing 14-8 shows the complete set of abstract message definitions that describe the messages
for all the use case scenarios within the WSDL 1.1 document.

Listing 14-8. WSDL 1.1 Message Definitions for Example Web Service

<wsdl:message name="ProjectFault" >
<wsdl:part element="types:faultDetail" name="faultDetail" ></wsdl:part>
</wsdl:message>

<wsdl:message name="DownloadProject" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:project" name="project" ></wsdl:part>
</wsdl:message>

<wsdl:message name="GetProjects" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:projectsDetail" name="detail" ></wsdl:part>
</wsdl:message>

<wsdl:message name="AuthUser" >

<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:authDetail" name="detail" ></wsdl:part>
</wsdl:message>

<wsdl:message name="Project" >
<wsdl:part element="types:project" name="project" ></wsdl:part>
</wsdl:message>

<wsdl:message name="Projects" >
<wsdl:part element="types:projects" name="projects" ></wsdl:part>
</wsdl:message>

<wsdl:message name="RemoveProject" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:remove" name="remove" ></wsdl:part>
</wsdl:message>

<wsdl:message name="UploadZip" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:manifest" name="manifest" ></wsdl:part>
<wsdl:part name="zip" type="xsd:base64Binary" ></wsdl:part>
</wsdl:message>



378 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

<wsdl:message name="DownloadZip" >
<wsdl:part element="types:manifest" name="manifest" ></wsdl:part>
<wsdl:part name="zip" type="xsd:base64Binary" ></wsdl:part>
</wsdl:message>

The abstract messages are used by wsdl:operations within wsdl:portType, as discussed in the
next section.

Port Type

Justlike aJava interface, thewsdl:portType element describes an abstract web service interface. Each
wsdl:portType element contains one or more wsdl:operation elements, whereby each wsdl:operation
element defines the message exchange pattern for that wsd1:operation.

A wsdl:operation element in the most general request-response message exchange pattern
case contains awsdl:input element, awsdl:output element, and zero or more wsdl: fault elements,
where each of these elements is associated with a wsdl :message definition through the message
attribute. wsdl: input, as the name implies, defines the request message, wsdl:output defines the
response message, and wsdl:fault defines the details of the SOAP fault message. An example of a
request-response wsdl:operation is download, as shown here:

<wsdl:operation name="download" >
<wsdl:input message="defs:DownloadProject" name="project" >
</wsdl:input>
<wsdl:output message="defs:DownloadZip" name="downloadZip" >
</wsdl:output>
<wsdl:fault message="defs:ProjectFault" name="fault" >
</wsdl:fault>

</wsdl:operation>

In download wsdl:operation shown previously, defs:DownloadProject, defs:DownloadZip, and
defs:ProjectFault are abstract messages that are used in the request-response message exchange
pattern.

For a one-way exchange pattern, only a single wsd1:input element is required, as in the case of
remove wsdl:operation shown here:

<wsdl:operation name="remove" >

<wsdl:input message="defs:RemoveProject" name="project" >
</wsdl:input>

</wsdl:operation>

You cannot specify awsdl: fault message without awsdl:output message, because a SOAP fault
message is generated only if a response was expected. So, for example, you cannot add awsdl:fault
to awsdl:operation named remove.

The wsdl:portType for the example web service is named ProjectPortType, and it defines the
following wsdl:operation for the use case scenarios:

¢ Uploading documents to a project is defined by upload.

¢ Downloading documents from a project is defined by download.

* Getting information about all the projects owned by a user is defined by getProjects.

¢ Removing documents from a project is defined by remove.

¢ Anauthenticate operation, which is not required for these use cases, can be used to authen-

ticate a user and keep user information in an HTTP session.

Listing 14-9 shows the complete wsd1:portType for the example web service.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Listing 14-9. Port Types for the Example Web Service
<wsdl:portType name="ProjectPortType" >

<wsdl:operation name="download" >
<wsdl:input message="defs:DownloadProject” name="project" ></wsdl:input>
<wsdl:output message="defs:DownloadZip" name="downloadZip" ></wsdl:output>
<wsdl:fault message="defs:ProjectFault" name="fault" ></wsdl:fault>
</wsdl:operation>

<wsdl:operation name="upload" >
<wsdl:input message="defs:UploadZip" name="uploadZip" ></wsdl:input>
<wsdl:output message="defs:Project" name="project" ></wsdl:output>
<wsdl:fault message="defs:ProjectFault" name="fault" ></wsdl:fault>
</wsdl:operation>

<wsdl:operation name="remove" >
<wsdl:input message="defs:RemoveProject" name="project" ></wsdl:input>
</wsdl:operation>

<wsdl:operation name="getProjects" >

<wsdl:input message="defs:GetProjects" name="getprojects" ></wsdl:input>
<wsdl:output message="defs:Projects" name="projects" ></wsdl:output>
<wsdl:fault message="defs:ProjectFault" name="fault" ></wsdl:fault>
</wsdl:operation>

<wsdl:operation name="authenticate" >
<wsdl:input message="defs:AuthUser" name="authuser" ></wsdl:input>
<wsdl:output message="defs:AuthUser" name="authuser" ></wsdl:output>
<wsdl:fault message="defs:ProjectFault" name="fault" ></wsdl:fault>
</wsdl:operation>

</wsdl:portType>

As noted, wsd1:portType is an abstract interface. This abstract interface has to be bound to a
messaging protocol and a transport protocol, which is discussed in the next section.

Port Type Bindings to SOAP 1.1/HTTP

The abstract wsdl:portType needs to be bound to the SOAP 1.1/HTTP messaging protocol. There-
fore, you need to recursively bind the wsdl:portType element to SOAP 1.1/HTTP. In the following
discussion, the soap prefix, which is associated with a WSDL 1.1 to SOAP 1.1 binding, is associated
with the http://schemas.xmlsoap.org/wsdl/soap/ namespace.

The SOAP 1.1/HTTP binding for defs:ProjectPortType wsdl:portType is named
ProjectSoapBinding.

SOAP 1.1 to HTTP Binding

The following snippet specifies that the SOAP 1.1 messaging be bound to the HTTP (http://schemas.
xmlsoap.org/soap/http) message transport:

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" >
</soap:binding>

379



380

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

In addition, it specifies that the SOAP 1.1 messaging mode should be of type document, which is
described in the next section.

SOAP 1.1 Messaging Style

SOAP 1.1 messaging style, which is a completely distinct concept from the concept of message exchange
patterns (which can be request-response or one-way) and the concept of message encoding (which for
us is always literal), specifies rules for the structure of the XML content in the payload of the
soapenv:Body element. Two possible SOAP 1.1 messaging styles exist:

* Remote procedure call (rpc) style

* Document (document) style

You will look at each of the messaging styles next.

Remote Procedure Call Style

As the name implies, this style embodies the semantics associated with remote procedure invocations.
Under this style, the following is true:

¢ The content of the soapenv:Body element always has a single child element whose tag name
corresponds to the operation name being remotely invoked.

¢ The grandchild elements of the soapenv:Body element denote the parameters associated with
the remote operation.

¢ Thenames and order of the grandchild elements correspond to the remote operation param-
eter names and their order.

¢ The child and grandchild elements of soapenv:Body element must be namespace qualified;
the namespace is application specific.

This style is completely redundant, because the document style, which we will describe in the
next section, is much more general and, more important, adheres to the fundamental tenets of
keeping interacting applications as loosely coupled as possible. By contrast, the rpc style is akin
to making a method call, with all the attendant implications of tight coupling between the calling
application and the called application. In our opinion, the rpc style is the antithesis of loosely
coupled applications and should be, as much as possible, avoided.

Document Style

The rules for the structure of soapenv:Body in the document style are simple:

¢ The content of soapenv:Body element should be well-formed XML, and all soapenv:Body child
elements should be namespace qualified in an application-specific namespace.

e Ifawsdl:part, mapped to the soapenv:Body element, corresponds to a schema element (that
is, it has an element attribute), in the document-style message the schema element occurs as a
child of the soapenv:Body element.

e Ifawsdl:part, mapped to the soapenv:Body element, corresponds to a schema type (that is, it
has a type attribute) in the document-style message, then the soapenv:Body element assumes
this schema type, and the child elements of soapenv:Body conform to this schema type. This
implies that in the case of a wsdl:part with a type attribute, there can be only one wsdl:part
in its wsd1 :message, since the soapenv:Body element can assume only a single schema type.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Listing 14-1 is an example of document-style message. You will see examples of specifying
document style in the wsd1:operation to soap:operation binding in the next section.

Binding wsdl:operation to SOAP 1.1

This is where you make a wsdl:operation concrete by binding each wsdl:operation to SOAP 1.1
messaging. For example, the binding of download wsd1:operation to SOAP 1.1 consists of the
following parts:

* Defining a soap:operation with a soapAction and SOAP 1.1 messaging style. A soapAction is
a hint to message processing nodes, which, according to WS-I BP 1.1, helps improve interop-
erability between applications. It is transported as an HTTP header attribute. It is essentially
a mechanism to infer something about a SOAP message by just looking at the HTTP header,
without having to inspect the SOAP message.

* Binding awsdl:input abstract message to soap:header and soap:body.
* Bindingwsdl:output to amime:multipartRelated message.

* Bindingwsdl:fault to soap:fault.

We explain each of the previous steps in the following sections.

Defining soap:operation
The soap:operation binding for download wsdl:operation is defined as follows:

<soap:operation
soapAction="http://www.apress.com/xmljava/webservices/download"
style="document" >

</soap:operation>

Remember, each SOAP 1.1 message is transported within an HTTP message. The URI in the
soapAction attribute of soap:operation is included as the value of the SOAPAction HTTP header.

Binding wsdl:input

The wsdl:input in a download operation is based on the defs:DownloadProject abstract message,
which defines two wsdl:part elements, as shown here:

<wsdl:message name="DownloadProject" >
<wsdl:part element="types:userInfo" name="user" ></wsdl:part>
<wsdl:part element="types:project” name="project" ></wsdl:part>
</wsdl:message>

When defs:DownloadProject is bound to a SOAP 1.1 message, you can choose to bind the user
part to the soap:header element and the project part to the soap:body element, as shown here:

<wsdl:input>
<soap:header message="defs:DownloadProject"
part="user" use="literal" >
</soap:header>

<soap:body parts="project" wuse="literal" ></soap:body>
</wsdl:input>

381



382 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Binding wsdl:output

The wsdl:output in a download operation is based on the defs:DownloadZip abstract message, as
shown here:

<wsdl:message name="DownloadZip" >
<wsdl:part element="types:manifest" name="manifest" ></wsdl:part>
<wsdl:part name="zip" type="xsd:base64Binary" ></wsdl:part>
</wsdl:message>

The defs:DownloadZip abstract message contains two parts. The first part is manifest, and the
second part, zip, is a Base 64 binary type containing the downloaded ZIP file. The wsdl:output is
bound to the SOAP 1.1 message as a MIME multipart-related message. The manifest part is bound to
the soap:body contained within a mime:part, and the zip part is bound to a mime:content contained
within mime:part, as shown here:

<wsdl:output>
<mime:multipartRelated>
<mime:part>
<soap:body parts="manifest" use="literal" ></soap:body>
</mime:part>

<mime:part>
<mime:content part="zip" type="application/zip" >
</mime:content>
</mime:part>
</mime:multipartRelated>
</wsdl:output>

Binding wsdl:fault
The wsdl:fault is mapped to soap:fault, as shown here:

<wsdl:fault name="fault" >
<soap:fault name="fault" use="literal" ></soap:fault>
</wsdl:fault>

Complete Port Type Binding
Listing 14-10 shows the complete SOAP 1.1/HTTP binding for ProjectPortType.

Listing 14-10. SOAP 1.1/HTTP Binding for ProjectPortType

<wsdl:binding name="ProjectSoapBinding" type="defs:ProjectPortType" >
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" >
</soap:binding>
<wsdl:operation name="download" >
<soap:operation
soapAction="http://www.apress.com/xmljava/webservices/download"
style="document" >
</soap:operation>
<wsdl:input>
<soap:header message="defs:DownloadProject"
part="user" use="literal" >
</soap:header>



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

<soap:body parts="project" wuse="literal" ></soap:body>
</wsdl:input>

<wsdl:output>
<mime:multipartRelated>
<mime:part>
<soap:body parts="manifest" use="literal" ></soap:body> </mime:part>

<mime:part>
<mime:content part="zip" type="application/zip" ></mime:content>
</mime:part>
</mime:multipartRelated>
</wsdl:output>

<wsdl:fault name="fault" >
<soap:fault name="fault" use="literal" ></soap:fault> </wsdl:fault>
</wsdl:operation>

<wsdl:operation name="upload" >

<soap:operation

soapAction="http://www.apress.com/xmlJava/webservices/upload"
style="document" >

</soap:operation>

<wsdl:input>
<soap:header message="defs:UploadZip" part="user" use="literal" >
</soap:header>

<mime:multipartRelated>
<mime:part>
<soap:body parts="manifest" use="literal" ></soap:body>
</mime:part>
<mime:part>
<mime:content part="zip" type="application/zip" ></mime:content>
</mime:part>
</mime:multipartRelated>
</wsdl:input>

<wsdl:output>
<soap:body parts="project" wuse="literal" ></soap:body> </wsdl:output>

<wsdl:fault name="fault" >
<soap:fault name="fault" use="literal" ></soap:fault></wsdl:fault>
</wsdl:operation>

<wsdl:operation name="remove" >

<soap:operation
soapAction="http://www.apress.com/xmlJava/webservices/remove"
style="document" >

</soap:operation>

<wsdl:input>
<soap:header message="defs:RemoveProject"
part="user" use="literal" >
</soap:header>
<soap:body parts="remove" use="literal" >

383



384 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

</soap:body>
</wsdl:input>
</wsdl:operation>

<wsdl:operation name="getProjects" >
<soap:operation
soapAction="http://www.apress.com/xmljava/webservices/getprojects"
style="document" >
</soap:operation>
<wsdl:input>
<soap:header message="defs:GetProjects"
part="user" use="literal" >
</soap:header>
<soap:body message="defs:GetProjects"”
parts="detail" wuse="literal" »
</soap:body>
</wsdl:input>

<wsdl:output>
<soap:body parts="projects" wuse="literal" ></soap:body>
</wsdl:output>

<wsdl:fault name="fault" >
<soap:fault name="fault" wuse="literal" ></soap:fault> </wsdl:fault>
</wsdl:operation>

<wsdl:operation name="authenticate" >
<soap:operation
soapAction="http://www.apress.com/xmljava/webservices/authenticate
style="document" >
</soap:operation>
<wsdl:input>
<soap:header message="defs:AuthUser"
part="user" use="literal" ></soap:header>
<soap:body message="defs:AuthUser"
parts="detail" use="literal" >
</soap:body>
</wsdl:input>

<wsdl:output>
<soap:header message="defs:AuthUser"
part="user" use="literal" >
</soap:header>
<soap:body message="defs:AuthUser"
parts="detail" use="literal" >
</soap:body>
</wsdl:output>

<wsdl:fault name="fault" >
<soap:fault name="fault"
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>

use="literal" ></soap:fault>



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Service Port

Each wsdl:portType binding must be attached to a wsd1l:port within a wsdl:service. For example,
the defs:ProjectSoapBinding port type binding shown in Listing 14-10 is mapped to the
ProjectPortTypeImplPort port within the ProjectPortTypeImplService service, as shown here:

<wsdl:service name="ProjectPortTypeImplService" >
<wsdl:port binding="defs:ProjectSoapBinding" name="ProjectPortTypeImplPort" >
<soap:address location="REPLACE_WITH_ACTUAL_URL" ></soap:address>
</wsdl:port>
</wsdl:service>

The mapping of a concrete port type binding to a port location creates a network service
endpoint that can be accessed by other applications using an HTTP URL. In general, although you
can, you should not specify a location HTTP URL and leave it as it is shown in the previous example.
Typically, this URL should be automatically assigned during the deployment of the web service,
which is discussed in detail in the “Using JAX-WS 2.0” section.

The complete WSDL 1.1 document for the example web service is included in the project. To
recap, building a WSDL document involves defining a schema definition, defining message types,
defining a port type (web service interface), defining a port type binding that binds a port type to
SOAP/HTTP, and, finally, defining a port that binds a port type binding to a network address.

Now that you have a WSDL 1.1 document, you are ready to build the example web service using
JAX-WS 2.0, which is what you will do in the next section.

Using JAX-WS 2.0

JAX-WS 2.0 is based on JSR-224.11 A reference implementation of the JAX-WS 2.0 specification is
included in the Java EE 5 SDK.12 In this section, we will use Java EE 5 SDK to show how to build and
deploy the example web service. The steps for building the web service using the Java EE 5 SDK are
as follows:

1. Use the wsimport tool included in the Java EE 5 SDK to automatically generate the Java code
that defines the Java types corresponding to the schema types, message types, and port types
defined in the services.wsdl document shown in Listing 14-10.

2. Implement the web service provider agent, writing whatever Java code is needed to implement
the application logic. The application logic implemented by this web service corresponds to
the use cases described earlier in the “Example Use Case Scenarios” section.

3. Compile generated and manually coded Java class files and package them into a Java EE
enterprise application archive file.

4. Deploy the enterprise application archive file in Sun One Application Server 9.0, which is
included in the Java EE 5 SDK. This makes the web service available for use at a specific
HTTP URL.

5. Write web service clients (requestor agents) to interact with the web service and run the
clients, and then observe the interaction.

In the following sections, you will follow the steps outlined previously.

11. JSR-224 is available at http://www.jcp.org/en/jsr/detail?id=224.
12. The Java EE 5 SDK is available at http://java.sun.com/javaee/downloads/index. jsp.

385



386

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Installing the Software

Before you can proceed, you need to download and install the Java EE 5 SDK, which includes Sun
One Application Server 9.0. The server includes the Java DB database, which is based on Apache Derby.13

After installing the SDK, start the included Java DB database and Sun One Application Server 9.0. On
Windows,4 you can select Start Java DB in the Sun One Application Server 9.0’s Programs menu to
start the database, and select Start Default Server to start the server.

After starting the database and the server, go to http://localhost:8080/ in a browser, and verify
that the server is running. When the server starts, it prints the ports it is listening on, so if http://
localhost:8080/ does not work, try the other ports listed by server, such as http://localhost:2492/.

After the server is running, you can go to http://localhost:4848/ to access the Sun One
Application Server 9.0 administration console. If you are asked to log in, specify the username and
password you configured during the server installation. The administration console provides the
Enterprise Applications link for deploying enterprise applications and the Web Services link for
deploying web services.

Setting Up the Eclipse Project

You will need J2SE 5.0 to build your Eclipse project. Therefore, install J2SE 5.0, in case you have not
already done so.

Next, you need to download the Chapter14 project from http://www.apress.com/ and import
the project into Eclipse by selecting File » Import. It is important that your Eclipse workspace not
contain any spaces in its file system path; otherwise, you will run into problems later in this chapter,
as you go through the steps for building the example web service. Figure 14-6 shows the Chapter14
project directory structure.

¥
¥
¥
¥
¥
+-2), JRE System Library [jre1.5.0_07]
+- [ javaee.jar
+-- ] activation.jar
+]- () appserv-ws.jar
+-- (] com-sun-commons-logging.jar
+-[= app
+- 7= dist
+-[= jsp
= lib
+-[2= wedl
build. xml
@ testproject.zip

Figure 14-6. Project directory structure

13. Apache Derby is part of the Apache DB project (http://db.apache.org/derby/).
14. For other platforms, follow the product documentation.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

The project folders are as follows:

The wsclient folder contains Java files corresponding to the web service clients, used to
interact with the example web service.

The wsdl folder has the web service WSDL 1.1 document (services.wsdl), the WSDL 1.1
customization file (svcbindings.xml) used for customizing WSDL 1.1 to Java mappings, the
schema document (types.xsd), and the JAXB 2.0 binding customization file (binding.xjb)
used for customizing JAXB 2.0 object bindings.

The web folder has Java files, XML documents, and properties files related to Java Server Faces
(JSF)-based implementations of web pages. Understanding the contents of this folder is not
central to understanding web services, and this content appears in this chapter solely because
we wanted to show how to build a complete working example. JSF is part of Java EE 5 and is a
server-based technology for constructing a web-based user interface. JSF is beyond the scope
of this book. However, if you are interested in learning more about JSF, we recommend Pro
JSF and Ajax: Building Rich Internet Components.

The ejb folder contains Java code related to application logic and database persistence, based
on the Enterprise Java Beans (EJB) 3.0 technology. EJB 3.0 is part of Java EE 5 and is a tech-
nology for implementing object-relational mapping, automatic database persistence, and
application logic. E]JB 3.0 is beyond the scope of this chapter. For a more detailed look at EJB
3.0, we recommend Pro EJB3: Java Persistence APL.16

The wsgen folder is for Java source files generated by the wsimport tool. When you initially
import the project into Eclipse, this folder will be empty. The generated Java files correspond
to JAXB 2.0 object binding files and web service interfaces.

The wsimpl folder has Java files for implementing web service interfaces. These implementa-
tion files use EJBs to implement the application logic and interact with the database.

The app directory has the application.xml deployment descriptor in the config folder. In this
project, we will show how to build an enterprise application archive, which will be deployed
in the server. This archive will contain the example web service. The application.xml deploy-
ment descriptor specifies deployment directives for the enterprise application, when the
application is deployed in the Sun One Application Server 9.0. For more details about this, we
recommend the Java EE 5 tutorial at http://java.sun.com/javaee/5/docs/tutorial/doc/.

The jsp directory has the JSF pages for the web services application.

The Testproject.zip file is an example ZIP file that will be used by the web service client to
upload documents to a project using the web service.

Figure 14-7 shows the Chapter14 project Java build path.

15. Pro JSF and Ajax: Building Rich Internet Components (Apress, 2006) by Jonas Jacobi and John Fallows.
16. Pro EJB3: Java Persistence API (Apress, 2006) by Mike Keith and Merrick Schincariol.

387



388 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

& Properties for Chapter14 = |D|ﬂ

[bvpefiter text =] Java Build Path LIV

Euilders 2 Source I 1=* Projects = Libraries | % order and Export I

/a Build Path JARs and class folders on the build path:
Java Code Style

Java Compiler -=_‘- activation.jar - Chapter14/lib Add JaRs. .. |
.. Javador Location | appsery-ws.jar - Chapter14flib
Project References com-sun-commons-logging. jar - Chapter14/lib Add External JARs... |
| javaee.jar - Chapter14/lib .
-2 JRE System Library [JRES.D] it o, |
Add Library. .. |
Add Class Folder... |

Edit. .. |
Remayve |

Default output Folder:

Chapter14/bin Browse. .. |
Ok I Cancel |

Figure 14-7. Chapter14 project Java build path

Setting Up the wsimport Tool

The wsimport tool processes a WSDL 1.1 document as follows:

» It generates the SEI, the service, and the JAXB 2.0 object bindings, based on the contents of
the WSDL 1.1 document.

* The SEI is aJava interface corresponding to a wsdl:portType definition within a WSDL 1.1
document. The provider agent that implements the web service provides a concrete imple-
mentation for an SEI.

* The service is a class that can be used by a web service client to interact with the web service.

¢ The JAXB 2.0 object bindings correspond to the schema types in the WSDL 1.1 document.
These object bindings are used for marshaling and unmarshaling web service data types to
and from XML content encapsulated within SOAP 1.1 messages.

You will use wsimport to generate the SEI, the service, and the JAXB 2.0 object bindings for the
services.wsdl WSDL 1.1 document.

To use the wsimport tool, you need to first create an external tools configuration for wsimport by
selecting Run » External Tools » External Tools. To create an external tools configuration, go through
the following steps:

1. Right-click the Program node in the External Tools area, and select New.
2. Specify a name for the configuration, such as wsimport.

3. Specify the wsimport.bat file in the Location field.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

4. Inthe Working Directory field, specify ${project_loc}, and in the Arguments field, you need
to specify the following arguments: -s wsgen -d bin -keep -verbose -b wsdl/binding.xjb
-b wsdl/svcbindings.xml wsdl/${resource name}.

5. Click the Apply button. An external tools configuration gets configured for the wsimport tool,
as shown in Figure 14-8.

& External Tools . x|
Create, manage, and run configurations E
~
Run a program SN
|
Configurations: Mame: st\mport
=4 Ant Buid
ton i Chapter14 build,xml = =
=] main |n§a Refresh | 78 Environment | £ Common
[~ Locatian:
[ C:i5unAppServer|bintwsimport bat
Browse ‘Warkspace... | Brawse Fils System,.. | Yariables. ., |
~Ywiorking Direckory:
| fiproject_lock
Browse Warkspace... | Brawse File System. .. | Wariables. .. |
—Arguments:
-5 wsgen -d bin -keep -verbose -b wsdlfbinding. xjb -b wsdlfsvchindings. xml wsdl/${resource_name} ;I
Variables. ..
NMote: Enclose an argument containing spaces using double-guotes ("),
Tl Delete £l st

Figure 14-8. ws import external tools configuration

You also need to add the environment variable JAVA_HOME by selecting the Environment tab and
subsequently clicking the New button. To add the wsimport external tools configuration to the Favorites
menu, select the Common tab, and select the External Tools box in the Display in Favorites menu.

WSDL 1.1 to Java Mapping

Before you run the wsimport tool to generate the WSDL 1.1 to Java mapping for services.wsdl, we
will cover the general concepts of this mapping process (we refer to the concept of customizations,
which we will cover later in the section “Customizing WSDL 1.1 to Java Mapping”):

e Eachwsdl:portType within a WSDL 1.1 document is mapped to a Java SEIL.
* Eachwsdl:operation within awsdl:portType is mapped to a Java method within the SEI.

¢ Inthe absence of customizations, the name of the mapped Java method is the same as the
name of the wsd1:operation name attribute. By default, since the wsd1l:operation name within
awsdl:portType is unique, there will be no overloaded methods. It is best to adhere to unique
method names if you are using customizations.

e Eachwsdl:operation must have one input message (wsdl:input). It may have zero or one
output messages (wsd1:output) and, if an output message is present, zero or more fault messages
(wsdl:fault).

389



390

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

¢ The input and output messages are mapped to Java method parameters using either the
nonwrapper style or the wrapper style. For exhaustive rules governing mapping under these
styles, we recommend the JAX-WS 2.0 specification. However, the following details pertaining
to these styles should be sufficient for most purposes:

¢ In the nonwrapper style, if the wsd1:part is part of an input message, the wsd1l:part element
is mapped to a Java method parameter. For output messages, the wsdl:part element is
mapped to either a holder class parameter or a return type. You can never go wrong if you
use the nonwrapper style—problem solved.

The wrapper style is applicable only if the wsd1:message referred to by awsdl:input ora
wsdl:output has only one wsdl:part. In our opinion, don’t bother with it. However, if you
must, read the next point.

In the wrapper style, the wsd1:part element is deemed to be a wrapper element (which is
how the style gets its name). The children of the wrapper element are mapped to Java
method parameters if the wsdl:part is part of an input message. If the wsdl:part is part of
an output message and the wrapper element has more than one child, the children are
mapped to Java method parameters using a holder class; for one child, it is just mapped to
aJava method return type. If the wsdl:part is part of both input and output messages, the
holder class method parameter is the answer.

¢ The fault message is mapped to a custom Java exception class.

In the next section, we will discuss how to customize the WSDL 1.1 to Java mapping.

Customizing the WSDL 1.1 to Java Mapping

You can customize the WSDL 1.1 to Java mapping for services.wsdl through an external customiza-
tion file. For an exhaustive survey of all the possible customizations, we recommend the JAX-WS 2.0
specification.1” However, we will discuss some of the more commonly used customizations in the
following sections.

One quick observation: the scope of the various bindings is determined through XPath expres-
sions addressing the WSDL 1.1 document node. For example, the node="//wsdl:portType[@name=
'ProjectPortType']" XPath expression addresses ProjectPortType wsdl:portType inservices.wsdl.

Package Name
You can customize the Java bindings package name as shown here:

<jaxws:package name="com.apress.javaxml.ws" >
</jaxws:package>

MIME Content

Remember, we had some wsdl:parts in services.wsdl that were bound to SOAP 1.1 mime:content,
as shown here in an excerpt from Listing 14-10:

<mime:part>
<mime:content part="zip" type="application/zip" >
</mime:content>
</mime:part>

17. The JAX-WS 2.0 specification is available for download at http://www.jcp.org/en/jsr/detail?id=224.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

If you want to bind the mime: content to the most specific Java type allowed by metadata in the
type attribute, then you can specify that in the customization, as shown here:

<jaxws:enableMIMEContent>true</jaxws:enableMIMEContent>

Method Name

If you want to customize the Java method name corresponding to a wsdl:operation, you can do so
as shown here for download wsdl:operation:

<jaxws:bindings
node="//wsdl:portType[@name="ProjectPortType']/wsdl:operation[@name="download']" >
<jaxws :method name="downloadProject" ></jaxws:method>
</jaxws:bindings>

In the previous example, the download wsdl:operation name is mapped to the downloadProject
Java method name.

Handler Chains

It is possible to specify a handler chain that intercedes between a web service client and an SEI for
messages traveling in either direction. The following example specifies a handler chain for a logging
handler:

<javaee:handler-chains>
<javaee:handler-chain>
<javaee:handler>
<javaee:handlerclass>
com.apress.javaxml.ws.impl.LoggingHandler
</javaee:handler-class>
</javaee:handler>
</javaee:handler-chain>
</javaee:handler-chains>

The LoggingHandler. java of course is a custom class and is included in the Eclipse project for
this chapter.

Complete Customization File

The svcbindings.xml file, shown in Listing 14-11, contains customizations for WSDL 1.1 to Java
bindings: services.wsdl.

Listing 14-11. Customizations for WSDL 1.1 to Java Mapping: svcbindings. xml

<?xml version='1.0" encoding="UTF-8"' ?>

<jaxws:bindings wsdllLocation="services.wsdl"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jaxws:package name="com.apress.javaxml.ws" >
</jaxws:package>
<jaxws:enableMIMEContent>true</jaxws:enableMIMEContent>

<jaxws:bindings node="//wsdl:portType[@name="ProjectPortType']" >
<jaxws:enableWrapperStyle>true</jaxws:enableWrapperStyle>

391



392 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

<jaxws:bindings node="//wsdl:portType
[@name="ProjectPortType']/wsdl:operation
[@name="download"']" >
<jaxws :method name="downloadProject" ></jaxws:method>
</jaxws:bindings>

<jaxws:bindings node="//wsdl:portType
[@name="ProjectPortType']/wsdl:operation
[@name="upload']" >
<jaxws:method name="uploadProject" ></jaxws:method>
</jaxws:bindings>

<jaxws:bindings node="//wsdl:portType
[@name="ProjectPortType']/wsdl:operation
[@name="remove']" >
<jaxws:method name="removeProject" ></jaxws:method>
</jaxws:bindings>

</jaxws:bindings>

<jaxws:bindings node="wsdl:definitions"
xmlns:javaee="http://java.sun.com/xml/ns/javaee" >
<javaee:handler-chains>
<javaee:handler-chain>
<javaee:handler>
<javaee:handlerclass>
com.apress.javaxml.ws.impl.LoggingHandler
</javaee:handler-class>
</javaee:handler>
</javaee:handler-chain>
</javaee:handler-chains>
</jaxws:bindings>
</jaxws:bindings>

In the next section, we will discuss how to customize JAXB 2.0 bindings.

Customizing JAXB 2.0 Bindings

The binding.xjb shown in Listing 14-12 contains external JAXB 2.0 customizations, which are applied
to the types.xsd schema. These customizations specify the Java package for the object bindings and
whether to generate value classes; they should be fairly obvious, and if they are not, we recommend
reviewing Chapter 6, which covers JAXB in detail.

Listing 14-12. JAXB 2.0 Customizations: binding.xjb

<?xml version='1.0' encoding='utf-8' ?>
<jxb:bindings version="2.0"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<jxb:bindings node="/xs:schema"
schemalocation="types.xsd" >
<jxb:globalBindings generateValueClass="true" >
</jxb:globalBindings>



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

<jxb:schemaBindings>
<jxb:package name="com.apress.javaxml.ws" ></jxb:package>
</jxb:schemaBindings>
</jxb:bindings>
</jxb:bindings>

Now, you are ready to run the wsimport tool.

Running wsimport

To run the wsimport tool, first select the services.wsdl WSDL 1.1 document, and then select Run »
External Tools » wsimport.

Running the wsimport tool maps the services.wsdl document to the SEI and service Java types
and generates JAXB 2.0 object bindings, as per the customizations passed as arguments to wsimport.
Remember, the arguments to wsimport are -s wsgen -d bin -keep -verbose -b wsdl/binding.xjb
-b wsdl/svcbindings.xml wsdl/${resource name}.In the arguments, binding.xjb refers to an external
customization file for the JAXB 2.0 bindings, and svcbindings.xml refers to an external customiza-
tion file for the WSDL 1.1 to Java mappings.

The Java files corresponding to the SEI, the service, and the JAXB 2.0 object bindings for the
services.wsdl document get generated in the wsgen folder in the com.apress.javaxml.ws package.
To bring the generated files into the Eclipse project view, you need to refresh the Chapter14 project
files by selecting File » Refresh. Listing 14-13 shows the output from the wsimport tool.

Note If you see an error at this point instead of the output shown, make sure the absolute file system path to
the Eclipse project location has no spaces in it.

Listing 14-13. Output fromwsimport

com\apress\javaxml\ws\AuthDetail. java
com\apress\javaxml\ws\AuthScope.java
com\apress\javaxml\ws\DocumentInfo.java
com\apress\javaxml\ws\FaultDetail. java
com\apress\javaxml\ws\FolderInfo.java
com\apress\javaxml\ws\ObjectFactory. java
com\apress\javaxml\ws\ProjectInfo.java
com\apress\javaxml\ws\ProjectPortType.java
com\apress\javaxml\ws\ProjectPortTypeImplService.java
com\apress\javaxml\ws\Projects. java
com\apress\javaxml\ws\ProjectsDetail.java
com\apress\javaxml\ws\UserInfo.java
com\apress\javaxml\ws\package-info.java
com\apress\javaxml\ws\AuthDetail. java
com\apress\javaxml\ws\AuthScope.java
com\apress\javaxml\ws\DocumentInfo.java
com\apress\javaxml\ws\FaultDetail. java
com\apress\javaxml\ws\FolderInfo.java
com\apress\javaxml\ws\ObjectFactory.java
com\apress\javaxml\ws\ProjectFault.java
com\apress\javaxml\ws\ProjectInfo.java
com\apress\javaxml\ws\ProjectPortType. java
com\apress\javaxml\ws\ProjectPortTypeImplService.java
com\apress\javaxml\ws\Projects.java

393



394

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

com\apress\javaxml\ws\ProjectsDetail.java
com\apress\javaxml\ws\UserInfo. java
com\apress\javaxml\ws\package-info.java

The generated file ProjectPortType.java in the com.apress.javaxml.ws package defines the
SEL ProjectPortTypeImplService.java implements the service. All the other generated files in the
com.apress.javaxml.ws package correspond to JAXB 2.0 object bindings.

ProjectPortType SEI

The generated code for SEI in ProjectPortType. java uses anumber of different Java annotation tags,
which are explained in Table 14-3.

Table 14-3. Annotation Tags Used in ProjectPortType. java

Tag Name Description

WebService When used with a Java interface, it defines an SEI. The name attribute specifies
the name of the web service, and the targetNamespace attribute defines the
target namespace of the corresponding wsdl :portType.

HandlerChain Associates this web service with an externally defined handler chain, and
the file attribute defines the location of the handler chain file. The handler
chain is invoked before the SEI is invoked.

SOAPBinding Specifies how the web service is mapped to the SOAP 1.1 message body. The
paramterStyle attribute specifies whether the parameters are directly put
into the message body (ParameterStyle.BARE) or whether they are wrapped in
an element that bears the name of the operation (ParameterStyle.WRAPPED).
Basically, BARE corresponds to the document style, and WRAPPED corresponds
to the rpc style.

WebMethod This specifies a method that is exposed as a web service operation. The
operationName attribute specifies the name of the wsd1:operation. The action
attribute specifies the corresponding soapAction.

WebParam This specifies a method parameter that is mapped to a wsdl:part. The name
attribute specifies the name of this parameter. The partName specifies the
name of the wsd1:part. The header attribute specifies whether the parameter is
contained with a SOAP 1.1 header or body. The targetNamespace specifies the
XML namespace associated with the parameter.

WebResult This specifies a return value that is mapped to awsdl:part. The name attribute
specifies the name of this return value. The partName specifies the name
of the wsdl:part. The header attribute specifies whether the parameter is
contained with a SOAP 1.1 header or body. The targetNamespace specifies
the XML namespace associated with the parameter.

OnelWay This specifies there is only an input message with no response.

The ProjectPortType SEI mapping contains the Java mapping for ProjectPortType
wsdl:portType, as per the rules described in the section “WSDL 1.1 to Java Mapping.” For example,
the download wsdl:operationis mapped to a Java method as shown here:



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

@WebMethod(operationName = "download",
action = "http://www.apress.com/xmljava/webservices/download")
public void downloadProject(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas”,
header = true, partName = "user"
UserInfo user,
@WebParam(name = "project”,
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
partName = "project")
ProjectInfo project,
@WebParam(name = "manifest",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
mode = Mode.OUT, partName = "manifest")
Holder<ProjectInfo> manifest,
@WebParam(name = "zip",
targetNamespace =
Holder<DataHandler> zip)
throws ProjectFault;

, mode = Mode.OUT, partName = "zip")

In the previous example, the mapping of message parts to Java method parameters uses the
nonwrapper style, because the input and output messages have two message parts each. The output
message parts, manifest and zip, are mapped to holder classes, Holder<ProjectInfo> and
Holder<DataHandler>, respectively. The fault message part is mapped to the generated ProjectFault
exception.

Listing 14-14 shows the generated code for the ProjectPortType SEI in ProjectPortType. java.

Listing 14-14. Generated Code in ProjectPortType. java

package com.apress.javaxml.ws;

import javax.activation.DataHandler;
import javax.jws.HandlerChain;
import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebParam.Mode;
import javax.jws.WebResult;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;
import javax.jws.soap.SOAPBinding.ParameterStyle;
import javax.xml.ws.Holder;

@WebService(name = "ProjectPortType",

targetNamespace = "http://www.apress.com/xmljava/webservices/definitions")
@HandlerChain(file = "ProjectPortType handler.xml")
@SOAPBinding(parameterStyle = ParameterStyle.BARE)
public interface ProjectPortType {

395



396

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

@WebMethod(operationName = "download",
action = "http://www.apress.com/xmljava/webservices/download")
public void downloadProject(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
header = true, partName = "user"
UserInfo user,
@WebParam(name = "project”,
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
partName = "project")
ProjectInfo project,
@WebParam(name = "manifest",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
mode = Mode.OUT, partName = "manifest")
Holder<ProjectInfo> manifest,
@WebParam(name = "zip",
targetNamespace =
Holder<DataHandler> zip)
throws ProjectFault;

, mode = Mode.OUT, partName = "zip")

@WebMethod (operationName = "upload"”,
action = "http://www.apress.com/xml]ava/webservices/upload")
@WebResult(name = "project",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
partName = "project")
public ProjectInfo uploadProject(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
header = true, partName = "user"
UserInfo user,
@WebParam(name = "manifest",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
partName = "manifest")
ProjectInfo manifest,
@WebParam(name = "zip", targetNamespace =
DataHandler zip)
throws ProjectFault;

, partName = "zip")

@WebMethod(operationName = "remove",
action = "http://www.apress.com/xml]ava/webservices/remove")
@0neway
public void removeProject(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
header = true, partName = "user"
UserInfo user,
@WebParam(name = "remove",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
partName = "remove"
ProjectInfo remove);



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 397

@WebMethod(action = "http://www.apress.com/xmljava/webservices/getprojects")
@WebResult(name = "projects"”,
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
partName = "projects")
public Projects getProjects(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
header = true, partName = "user"
UserInfo user,
@WebParam(name = "projectsDetail”,
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
partName = "detail")
ProjectsDetail detail)
throws ProjectFault;

@WebMethod(action = "http://www.apress.com/xmljava/webservices/authenticate")
public void authenticate(
@WebParam(name = "userInfo",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas",
header = true, mode = Mode.INOUT, partName = "user"
Holder<UserInfo> user,
@WebParam(name = "authDetail",
targetNamespace = "http://www.apress.com/xmljava/webservices/schemas"”,
mode = Mode.INOUT, partName = "detail")
Holder<AuthDetail> detail)
throws ProjectFault;

We will show how to implement the ProjectPortType SEI in the next section.

Implementing the ProjectPortType SEI

The ProjectPortType SEl is implemented in the ProjectPortTypeImpl. java file in the com.apress.
javaxml.ws.impl package, under the wsimpl folder, as shown in Listing 14-15. The javax.ejb.EJB
annotation tag in Listing 14-16 refers to an EJB interface. In the code shown in Listing 14-15, you will
notice that in each of the SEI methods, you merely invoke a corresponding EJB method. This is
because the application logic is all implemented within EJB classes.

Listing 14-15. SEI Implementation in ProjectPortTypeImpl. java

package com.apress.javaxml.ws.impl;

import javax.activation.DataHandler;
import javax.ejb.EJB;
import javax.xml.ws.Holder;

import com.apress.javaxml.ws.AuthDetail;

import com.apress.javaxml.ws.FaultDetail;
import com.apress.javaxml.ws.ProjectInfo;
import com.apress.javaxml.ws.Projects;

import com.apress.javaxml.ws.ProjectsDetail;
import com.apress.javaxml.ws.UserInfo;

import com.apress.javaxml.ws.ProjectFault;
import com.apress.javaxml.service.Projectlocal;
import com.apress.javaxml.service.UserlLocal;



398 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

@javax.jws.WebService(
targetNamespace = "http://www.apress.com/xmljava/webservices/definitions",
serviceName = "ProjectPortTypeImplService",
portName = "ProjectPortTypeImplPort",
endpointInterface = "com.apress.javaxml.ws.ProjectPortType",
wsdllocation = "WEB-INF/wsdl/services.wsdl")
public class ProjectPortTypeImpl {
@EJIB
private Projectlocal projectlocal;

@EJB
private Userlocal userlocal;

public void downloadProject(UserInfo user, ProjectInfo project,
Holder<ProjectInfo> manifestHolder, Holder<DataHandler> dhHolder)
throws ProjectFault {
try {

// download ZIP file

manifestHolder.value = project;

DataHandler dh = projectlLocal.downloadZipFile(user,
manifestHolder.value);

// put data handler in data handler holder
dhHolder.value = dh;

} catch (Exception e) {
FaultDetail detail = new FaultDetail();
detail.setMajor ("DOWNLOAD");
detail.setMinor("NONE");
throw new ProjectFault(e.getMessage(), detail);

}

public ProjectInfo uploadProject(UserInfo user, ProjectInfo manifest,
DataHandler zip) throws ProjectFault {

try {
// upload ZIP file
projectlocal.uploadZipFile(user, manifest, zip);
} catch (Exception e) {
FaultDetail detail = new FaultDetail();
detail.setMajor("UPLOAD");
detail.setMinor("NONE");
throw new ProjectFault(e.getMessage(), detail);
}
return manifest;

}

public void removeProject(UserInfo user, ProjectInfo remove) {
projectlLocal.remove(user, remove);

}

public Projects getProjects(UserInfo user, ProjectsDetail projectsDetail)
throws ProjectFault {



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 399

Projects projects = null;
try {
// get projects
projects = projectLocal.getProjects(user, projectsDetail);
} catch (Exception e) {
FaultDetail detail = new FaultDetail();
detail.setMajor ("GETPROJECTS");
detail.setMinor("NONE");
throw new ProjectFault(e.getMessage(), detail);
}

return projects;

}

public void authenticate(Holder<UserInfo> userInfoHolder,

Holder<AuthDetail> authDetailHolder) throws ProjectFault {

try {
UserInfo userInfo = userInfoHolder.value;
userLocal.login(userInfo.getEmail(), userInfo.getPwd());

} catch (Exception e) {
FaultDetail detail = new FaultDetail();
detail.setMajor("AUTHENTICATE");
detail.setMinor ("NONE");
throw new ProjectFault(e.getMessage(), detail);

The ProjectPortTypeImpl class uses the Projectlocal and UserLocal EJBs to access the applica-
tion logic. Listing 14-16 shows the ProjectlLocal EJB, which is in the Projectlocal. java file in the
com.apress.javaxml.service package in the ejb folder.

Listing 14-16. Projectlocal EJB in Projectlocal. java

package com.apress.javaxml.service;

import javax.activation.DataHandler;
import javax.ejb.local;

import com.apress.javaxml.ws.*;
@Local
public interface ProjectlLocal {
public ProjectInfo uploadZipFile(UserInfo user,
ProjectInfo manifest, DataHandler zip);
public DataHandler downloadZipFile(UserInfo user, ProjectInfo manifest);

public void remove(UserInfo user, ProjectInfo manifest);

public Projects getProjects(UserInfo user, ProjectsDetail detail);

The ProjectLocal EJB interface is implemented by the ProjectService class. The ProjectService
class in the com.apress. javaxml.service package in the ejb folder provides the actual application



400

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

logic associated with the use case scenarios. The ProjectService class is not directly relevant to
understanding web services, so it is included for reference in the Eclipse project for this chapter.

Listing 14-17 shows the UserLocal EJB, which is in the UserLocal. java file in the com.apress.
javaxml.service package in the ejb folder.

Listing 14-17. UserLocal EJB inUserlocal. java

package com.apress.javaxml.service;
import javax.ejb.local;

@Local

public interface Userlocal {
public void login(String email, String pwd);
public void register(String email, String pwd);

public void changePwd(String email, String cpwd, String npwd);

public void unregister(String email, String pwd);

The UserlLocal interface is implemented by the UserService class. The UserService class in the
com.apress.javaxml.service package in the ejb folder provides the actual application logic for use
cases associated with registering a new user, logging in a user, changing a password for an existing
user, and unregistering a user. The UserService class is not directly relevant to understanding web
services, so it is included for reference in the Eclipse project for this chapter.

Building the Web Service

Here are the steps for building and deploying the web service application to Sun One Application
Server 9.0:

1. Build the Chapter14 project by selecting the Chapter14 project node in Package Explorer and
selecting Project » Build Project.

2. Build the enterprise application archive using the build.xml Ant file. To invoke Ant on the
build.xml file, right-click the build.xml file, and select Run As » Ant Build.

The build.xml file has three targets: jar, war, and ear. The jar target creates an EJB 3.0-compliant
archive module: projectejb. jar. Listing 14-18 shows the contents of projectejb.jar. The source
code corresponding to these classes is included in the project.

Listing 14-18. Contents of projectejb. jar

META-INF/MANIFEST.MF
com/apress/javaxml/persistence/Document.class
com/apress/javaxml/persistence/DocumentKey.class
com/apress/javaxml/persistence/Folder.class
com/apress/javaxml/persistence/FolderKey.class
com/apress/javaxml/persistence/Project.class
com/apress/javaxml/persistence/ProjectKey.class
com/apress/javaxml/persistence/User.class



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

com/apress/javaxml/service/Projectlocal.class
com/apress/javaxml/service/ProjectService.class
com/apress/javaxml/service/UserlLocal.class
com/apress/javaxml/service/UserService.class
com/apress/javaxml/ws/DocumentInfo.class
com/apress/javaxml/ws/FolderInfo.class
com/apress/javaxml/ws/ProjectInfo.class
com/apress/javaxml/ws/UserInfo.class
META-INF/persistence.xml

The war target creates a web application archive module: projectservice.war. Listing 14-19
shows the contents of projectservice.war. The jsp files and the XML documents under WEB-INF are
included in the project.

Listing 14-19. Contents of projectservice.war

META-INF/MANIFEST.MF
WEB-INF/classes/com/apress/javaxml/beans/UserBean.class
WEB-INF/classes/com/apress/javaxml/i18n/messages.properties
WEB-INF/classes/com/apress/javaxml/service/Projectlocal.class
WEB-INF/classes/com/apress/javaxml/service/UserLocal.class
WEB-INF/classes/com/apress/javaxml/ws/AuthDetail.class
WEB-INF/classes/com/apress/javaxml/ws/AuthScope.class
WEB-INF/classes/com/apress/javaxml/ws/DocumentInfo.class
WEB-INF/classes/com/apress/javaxml/ws/FaultDetail.class
WEB-INF/classes/com/apress/javaxml/ws/FolderInfo.class
WEB-INF/classes/com/apress/javaxml/ws/ObjectFactory.class
WEB-INF/classes/com/apress/javaxml/ws/ProjectFault.class
WEB-INF/classes/com/apress/javaxml/ws/ProjectInfo.class
WEB-INF/classes/com/apress/javaxml/ws/ProjectPortType.class
WEB-INF/classes/com/apress/javaxml/ws/ProjectPortTypeImplService handler.xml
WEB-INF/classes/com/apress/javaxml/ws/ProjectPortType handler.xml
WEB-INF/classes/com/apress/javaxml/ws/Projects.class
WEB-INF/classes/com/apress/javaxml/ws/ProjectsDetail.class
WEB-INF/classes/com/apress/javaxml/ws/UserInfo.class
WEB-INF/classes/com/apress/javaxml/ws/impl/LoggingHandler.class
WEB-INF/classes/com/apress/javaxml/ws/impl/ProjectPortTypeImpl.class
WEB-INF/classes/com/apress/javaxml/ws/package-info.class
WEB-INF/classes/types.xsd

WEB-INF/wsdl/services.wsdl

WEB-INF/wsdl/types.xsd

WEB-INF/faces-config.xml

chgpwd. jsp

home. jsp

index.jsp

register.jsp

styles.css

WEB-INF/web.xml

The ear target creates an enterprise application archive: project.ear. Listing 14-20 shows the
contents of project.ear. The META-INF/application.xml file is included in the project.

401



402

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Listing 14-20. Contents of project.ear

META-INF/MANIFEST.MF
projectejb.jar
projectservice.war
META-INF/application.xml

The ear target triggers the war target; the war target triggers the jar target. All module archives
are created under the dist folder. The default target is ear. Listing 14-21 shows the output from
building build.xml.

Listing 14-21. Output from build. xml

Buildfile: C:\workspace\Chapter14\build.xml
jar:
[delete] Deleting: C:\workspace\Chapteri4\dist\projectejb.jar
[jar] Building jar: C:\workspace\Chapteri4\dist\projectejb.jar
war:
[delete] Deleting: C:\workspace\Chapteri4\dist\projectservice.war
[war] Building war: C:\workspace\Chapter14\dist\projectservice.war
ear:
[delete] Deleting: C:\workspace\Chapteri4\dist\project.ear
[ear] Building ear: C:\workspace\Chapter14\dist\project.ear
BUILD SUCCESSFUL

Deploying the Web Service

You need to deploy the project. ear file in the administration console of Sun One Application Server 9.0.
You need to start the default server, start the Java DB server, and then open the administration
console for Sun One Application Server 9.0. To deploy the project.ear application, select the
Applications » Enterprise Applications node in the administration console. Click the Deploy
button. Select the project.ear file with the Browse button in the File to Upload, and click Next, as
shown in Figure 14-9.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Sun Java(TM) System A ‘osoft Internet Explorer dﬂlﬁ
File Edit WYiew Favorites Tools  Help |
degack - = - @ [0 & Qsearch SFavortes Pvedia B | 5y S = =
Address |@ http: flocalhost: 4848 asadminadmingui TopFrameset | o |Lnks >
[ |

User: in  Sernver: t Domain:

Sun Java™ System Application Server Admin Console

Common Tasks ;I Application Server = Applications = Enterprise Applications

[ Application Server

< 3 Applications Deploy Enterprise Application (Step 1 of 2)
3 Enterprise Applications Specify the location of an application to deploy, Applications can be in packaoed files, such as ear, orinthe stanu Enterprise
3 Weh Applications Application directory format.
@ EJBModules
£ Connector Modules Location: @ package file to be uploaded to the Application Server
O3 Lifecycle Modules File Ta Upload: |C\wurkspana\Chapter1 Adistproject ear Browse.

O3 App Client Modules
& wieb Serices
Custom MBeans
b B Resources
b [ Configuration

(& Package file or a directory path that is accessible from the server.

File Or Directory: |

[l
&) Done ’7 ’@ ,7 E Unknown Zone (iized)

Figure 14-9. Deploying the project.ear application

To run the verifier on the application and precompile the JSPs, select the check boxes for Run
Verifier and Precompile JSPs. To deploy the web service application, click the Finish button, as
shown in Figure 14-10.

403



404

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

rosoft Internet Explorer : o |= ﬂ

Wiews  Favorites  Tools  Help

-2 & | Qsearch GFavortes @veda 4| By S =0 2

@G0 |L|nks 2
=
HOME WERSION UPGRADE REGISTRATION LOGOUT

User. min - Server: Domain: n1

Sun Java™ System Application Server Admin Console

Sun™ Wic
Common Tasks ;I Application Server = Applications = Enterprise Applications =
Application Server . N . -
H Deploy Enterprise Application (Step 2 of 2) Cancel
v 3 Applications By defaultthe module is available as soon as itis deployed. To disable the module sothat is unavailable after deplafment, uncheck the
3 Enterprise Applications Enabled checkbox. If the module has already heen deployed, choose a different application name and deploy it under a new name.
3 Weh Applications *Indicates required fiel
O EJB Modules General
= Conneclor Modules File Name: projectear
= Lifecycle Modules

[T
Application Name: t
3 App ClientModules L [praject

§ web Services

=) Virtual Servers: l—
Custorn MBeans server

Matme must contsin only alphanumeric, undsrscors, dash, o dot characters

b 19 Resourss Associates an internst domain name with a physical server
Status:
b [ configuration s ¥ Enabled
Java Web Start: I~ Enabled
Run: ¥ verifier
Partorm detallad varifisation hefors deploying
Precompile: W Jsps s
Precampile JSPs, deploy only resulling class fles
Libraries: |
Description: I
Adet & description af the companent i
i || I} [ B
[&] Dore [ [EE Unknown Zone (Mixed)

Figure 14-10. Configuring settings for and deploying the project.ear application

The project.ear enterprise application gets deployed and appears under Enterprise Applications in
the Application Server tree.

You can test the web service deployment by selecting the Web Services » ProjectPortTypelmpl
node and clicking the Test button, as shown in Figure 14-11.



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 405

Sun Java(TM) System Appli n Server Platform E: osoft Internet Explorer

Tools

Visw  Favortes Help

$HBack - - 2} | Qisearch (GlFavorites @veda (4| B &b =1
ackess [] hetpi flacahas: 48/ asadminjadminguy TogFrameset =] @eo [unks >
UPGRADE REGISTRATION

File  Edit

User: admin Server: localhost Domain: dormaint

Sun Java™ System Application Server Admin Console

Sun™ Microsys

Common Tasks :I Application Berver = Weh Services = ProjectPordTvpelmpl

Application Si
E pplication Samer J General ‘ Publish Monitor Transformation

w @ Applications

< 3 Enterprise Applications Web Service - ProjectPortTypelmpl
B project ‘You can testthis web serice ifthe application is enabled
3 Web Applications
= EJBModules ‘h
& Gannector odules Name: ProjectPorTypelmpl
& Lifecycle Modules Endpoint Address URI: Iprojectsenvice/ProjectPortTepelmplService
= App Client Modules o .
Application: project
+ & Web Senvices )
WSDL: serviceswsdl
& ProjectPortTypeimpl
= Module Name: projectservice war
Custom MBeans
Mapping File: TiA
I B Resources apping Hile
i : wehseices xml
b B Comfiguration Webservices.xml:
Implementation Type: SERVLET
Implementation Class Hame: com.apress. javasmlws.impl.ProjectPorTypelmpl
Deployment Descriptors: wehaml
sun-wieb xm|
S [ @& [ [BE Unknown Zone (Mied)

Figure 14-11. Testing web service

A form to test web service implementation appears, as shown in Figure 14-12. This form is not
useful for actually testing the web service, but it does verify a successful deployment. We will not use
this form to test the web service.



406

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

; ProjectPortTypeImplService Web Service Tester - Microsoft Internet Explorer == ﬂ

File Edt View Favortes Tools Help |

=Bk - = - @[3 @ | QSearch (ElFavorites @iveda (B B & A -

Address I@http:ﬂflu(alhust:EDSDJDrD]EEtsErw(Eme]e(tPurtTypEImplEENl(EWester x| @& |Lin>s &

ProjectPortTypelmplService Web Service Tester

This form will allow you to test your web service implementation (W SDL File

To invoke an operation, fill the method parameter(s) input boxes and click on the button labeled with the method name

Methods :

public abstract void com. apress.zmljava. webservices, definitions. ProjectPortType.remove
(com apress. zmljava webservices. schemas UserInfo, com apress zmljava webservices. schemas. ProjectInfo)
remove | ] 3

public absiract void com apress. zmljava webservices. definitions. ProjectPort Type. authenticate(javazx xml ws Holder, javaz zml ws Holder) throws
com apress.zmljava. webservices. definitions. ProjectFault

authenticate | ] i )

public abstract com. apress. smljava webservices. schemas. ProjectInfo com apress mmljava webservices. defimitions ProjectPortType.upload
(com.apress.xmljava webservices. schemas. UserInfo com. apress. samljava webservices. schemas. ProjectInfo, byte[ ]) throws
cotn.apress. xmljava. webservices. definitions ProjectFault

_volosd | I I )

public abstract com apress zmljava webservices schemas Projects com apress. zmljava webservices. definitions ProjectPortType. getProjects
(com apress. zmljava webservices. schemas UserInfo, com apress zmljava webservices. schemas. ProjectsDetail) throws
com apress.zmljava. webservices, definitions. ProjectFault

getProjects d | )

=l
&) Done

[ [BE ocalintranet

Figure 14-12. Output from testing the web service

Registering a New User

You need to register a user with the web service so you can connect as a client for the web service.
Using the URL http://localhost:8080/projectservice/index.faces, display the form to register a

user. Click the Register link, specify a user email and password, and click Register button, as shown
in Figure 14-13.

New User Registeration

Email: Id\rohraﬂg@yahoo.com

Password: I*************

Confirm Password: I*************

—

Logm

=

Change Password
Figure 14-13. Registering a new user

The specified user email gets registered.




CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Web Service Client

The web service client uses a generated service proxy class,
com.apress.javaxml.ws.ProjectPortTypeImpl.java, as shown in Listing 14-22, to interact with the
web service. The key method of this class that you will use is the ProjectPortTypeImplService (URL
wsdllocation, QName serviceName) constructor to create a service proxy instance. You will invoke
the getProjectPortTypeImplPort() method on the service proxy instance to get an instance of the
ProjectPortType service interface.

Listing 14-22. Service: ProjectPortTypeImpl. java

package com.apress.javaxml.ws;

import
import
import
import
import
import
import

java.net.MalformedURLException;
java.net.URL;
javax.jws.HandlerChain;
javax.xml.namespace.QName;
javax.xml.ws.Service;
javax.xml.ws.WebEndpoint;
javax.xml.ws.WebServiceClient;

@WebServiceClient(name = "ProjectPortTypeImplService",
targetNamespace = "http://www.apress.com/xmljava/webservices/definitions"”,
wsdllocation = "wsdl/services.wsdl")

@HandlerChain(file = "ProjectPortTypeImplService handler.xml")

public

class ProjectPortTypeImplService

extends Service {

private final static URL PROJECTPORTTYPEIMPLSERVICE_WSDL_LOCATION;

static {

}

URL url = null,;
try {
url = new URL
("file:/C:/eclipse-workspaces/xmlbook/Chapteri4/wsdl/services.wsdl");
} catch (MalformedURLException e) {
e.printStackTrace();

}
PROJECTPORTTYPEIMPLSERVICE WSDL_LOCATION = url;

public ProjectPortTypeImplService(URL wsdlLocation, QName serviceName) {

}

super(wsdllLocation, serviceName);

public ProjectPortTypeImplService() {

super (PROJECTPORTTYPEIMPLSERVICE WSDL_LOCATION,
new OName("http://www.apress.com/xmljava/webservices/definitions",
"ProjectPortTypeImplService"));

407



408 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

@We
pub

bEndpoint(name = "ProjectPortTypeImplPort")
lic ProjectPortType getProjectPortTypeImplPort() {
return (ProjectPortType)super.getPort(new
QName("http://www.apress.com/xmljava/webservices/definitions",
"ProjectPortTypeImplPort"),
ProjectPortType.class);

The example web service application includes a web service client, ProjectClient, that can be

used to
com.apr

test all the use case scenarios defined by the web service. Listing 14-23 shows the code for
ess.javaxml.ws.client.ProjectClient.

Listing 14-23. Web Service Client: ProjectClient. java

package
import
import

import
import
import
import
import
import
import

import
import

public
pri

pri

pri
pri
pri

pri

/¥%
*
*
*/

pub

t

com.apress.javaxml.ws.client;
javax.xml.namespace.QName;
javax.xml.ws.Holder;

java.io.File;
java.io.FileOutputStream;
java.net.*;

java.util.*;
java.util.logging.Logger;
java.util.zip.ZipEntry;
java.util.zip.ZipFile;

javax.activation.*;
com.apress.javaxml.ws.*;

class ProjectClient {
vate static ProjectPortTypeImplService service;

vate static final Logger logger = Logger.getlogger(ProjectClient.class
.getName());

vate static File zfile;

vate static String email, pwd;

vate static URL wsdlUrl;

vate final static QName PROJECTSERVICE = new QName(

"http://www.apress.com/xmljava/webservices/definitions",
"ProjectPortTypeImplService");

@param args
the command line arguments

lic static void main(String[] args) {
ry {



CHAPTER 14 BUILDING XML-BASED WEB SERVICES 409

if (args.length == 4) {
email = args[o];
pwd = args[1];
wsdlUrl = new URL(args[2]);
zfile = new File(args[3]);
} else {
System.out
.println("Usage: <email> <password> <wsdl URL> <zipfile>");
System.exit(1);

doProjectServiceTests();

} catch (Exception e) {
logger.severe(e.toString());

}

private static void log(DocumentInfo dinfo) {
logger.info("Document Name:" + dinfo.getName());
logger.info("Document Created On:" + dinfo.getCreatedOn());
logger.info("Document Last Updated On:" + dinfo.getlastUpdated());

private static void log(FolderInfo finfo) {
logger.info("Folder Location:" + finfo.getlocation());
logger.info("Folder Created On:" + finfo.getCreatedOn());
logger.info("Folder Last Updated On:" + finfo.getlLastUpdated());
List<DocumentInfo> docs = finfo.getDocument();

Iterator<DocumentInfo> it = docs.iterator();
while (it.hasNext()) {
DocumentInfo docInfo = it.next();
log(docInfo);

}

private static void log(ProjectInfo pinfo) {
logger.info("Project Name:" + pinfo.getName());
logger.info("Project Created On:" + pinfo.getCreatedOn());
logger.info("Project Last Updated On:" + pinfo.getlastUpdated());
List<FolderInfo> folders = pinfo.getFolder();

Iterator<FolderInfo> it = folders.iterator();
while (it.hasNext()) {
FolderInfo folderInfo = it.next();
log(folderInfo);

}

private static void doProjectServiceTests() {

try {
logger.info("\nBegin ProjectService Tests\n");



410

CHAPTER 14

BUILDING XML-BASED WEB SERVICES

logger.info("Create service for:" + wsdlUrl);
service =
new ProjectPortTypeImplService(wsdlUrl,
PROJECTSERVICE);

ProjectPortType port = service.getProjectPortTypeImplPort();

UserInfo userInfo = new UserInfo();
userInfo.setEmail(email);
userInfo.setPwd(pwd);

Holder<UserInfo> userInfoHolder = new Holder<UserInfo>();
userInfoHolder.value = userInfo;
logger.info("Authenticate user:" +

userInfo.getEmail()+":"+userInfo.getPwd());

AuthScope scope = new AuthScope();
scope.setScope("session");

AuthDetail authDetail = new AuthDetail();
authDetail.setAny(scope);

Holder<AuthDetail> authDetailHolder = new Holder<AuthDetail>();
authDetailHolder.value = authDetail;

try {//Web Service Call - Authentication
port.authenticate(userInfoHolder, authDetailHolder);
} catch(Exception e) {
e.printStackTrace();
logger.info("User is not authorized");
System.exit(1);
}

logger.info("User is authorized");
ProjectInfo projectInfo = new ProjectInfo();

projectInfo.setName(zfile.getName());
projectInfo.setEmail(email);

ZipFile zipFile = new ZipFile(zfile);
Enumeration entries = zipFile.entries();
HashMap<String, FolderInfo>

folderMap = new HashMap<String, FolderInfo>();

while (entries.hasMoreElements()) {
Zipkntry zipEntry = (ZipEntry) entries.nextElement();
String entryName = zipEntry.getName();
if (lzipEntry.isDirectory()) {
String location = entryName.substring(0, entryName
.lastIndexOf("/") + 1);
String name = entryName.substring(entryName
.lastIndexOf("/") + 1);
FolderInfo folderInfo = (FolderInfo) folderMap
.get(location);



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

if (folderInfo == null) {
folderInfo = new FolderInfo();
folderMap.put(location, folderInfo);
folderInfo.setlocation(location);
projectInfo.getFolder().add(folderInfo);

}

DocumentInfo docInfo = new DocumentInfo();

docInfo.setName(name);

folderInfo.getDocument().add(docInfo);

}

}
DataHandler dh = new DataHandler(new FileDataSource(zfile));

logger.info("Uploading zip file:" + zfile.getName());
//Web Service Call-Upload

ProjectInfo retProjectInfo = port.uploadProject(userInfo,
projectInfo, dh);

logger.info("Begin Upload Project Status");

log(retProjectInfo);

logger.info("End Upload Project Status");

logger.info("Get All Projects:" + userInfo.getEmail());

ProjectsDetail detail = new ProjectsDetail();

detail.setFolders(false);

detail.setDocuments(false);

Projects projects = port.getProjects(userInfo, detail);
List<ProjectInfo> projectList = projects.getProject();
Iterator<ProjectInfo> itp = projectlList.iterator();
while (itp.hasNext()) {
projectInfo = itp.next();
logger.info("Downloading Project:" + userInfo.getEmail() +
+ projectInfo.getName());
Holder<ProjectInfo> mf = new Holder<ProjectInfo>();
Holder<DataHandler> zip = new Holder<DataHandler>();
//Web Service Call-Download
port.downloadProject(userInfo, projectInfo, mf, zip);

dh = zip.value;

if (dh != null) {

File temp = File.createTempFile(projectInfo.getName(),
"zip");

FileOutputStream fos = new FileOutputStream(temp);

dh.writeTo(fos);

fos.close();

zipFile = new ZipFile(temp);

entries = zipFile.entries();

41



412 CHAPTER 14 BUILDING XML-BASED WEB SERVICES

logger.info(("Begin Zip Entries:"));

while (entries.hasMoreElements()) {
ZipEntry zipEntry = (ZipEntry) entries.nextElement();
String entryName = zipEntry.getName();
logger.info("Zip entry:" + entryName);

}

logger.info(("End Zip Entries"));

temp.delete();

}

ProjectInfo pinfo = new ProjectInfo();
pinfo.setEmail(projectInfo.getEmail());
pinfo.setName(projectInfo.getName());

logger.info("Remove Project:"+
userInfo.getEmail()+":"+pinfo.getName());
port.removeProject(userInfo, pinfo);
}
logger.info("\nEnd ProjectService Tests\n");
} catch (Exception ex) {
logger.severe(ex.toString());

}

Running the ProjectClient Client

ToruntheProjectClient clientin Eclipse, you need to configure a Java application configuration for
ProjectClient by selecting Run » Run.

ProjectClient needs to know about the location of the WSDL document for the web service.
You obtain the location of the WSDL document from the web service deployed in Sun One Application
Server 9.0 by selecting the Web Services » ProjectPortTypeIlmpl node and clicking the services.wsdl
link, as shown in Figure 14-14.

In the services.wsdl file, the soap:address element’s location attribute, suffixed with ?WSDL,
specifies the WSDL URL.

In the Program Arguments field of the ProjectClient application configuration, specify the user
email, password, WSDL URL, and the testproject.zip file, as shown here:

useremail password <WSDL URL> testproject.zip



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

Sun Java(TM) System Appl n Server Platform Edi osoft Internet Explorer
Fle Edt Vew Favortes Took Help |
dgack - = - (D [ & Doewrch GFovories Tveda (B | By S
Address [€) hiep: flocalhost:4848fasadmin/admingui/TopFram =] e ks >

HOME || “ERSION

User: lin - Server: | t Domain: 1zin

Sun Java™ System Application Server Admin Console

Common Tasks ;I Application Server = Weh Services = ProjeciPorTypelmpl

E Application Sarver J General ‘ Publish | Monitor l Transformation

= @3 Applications

[ 03 Enterprize Applicalions Web Service - ProjectPortTypelmpl
@ Web Applications ‘ou can testthis web semice ifthe application is enabled

3 EJEModules

@ Connector Modules
3 Lifecycle Modules

HName: FrojectPorTypelmpl
(= App Client Modules Endpoint Address URE: IprojectservicelPrajectPortTypelmplSerice
= & web Services o
Application: project

& ProjectPortTypelmpl

— WSDL: senipgswsdl
Custom MBeans { 2
Module Name: projetTzerdce war

P B Resources

Mapping File: i

b [ Configuration Pping
Wehservices.xml: wehServices. |
Implementation Type: SERWLET

Implementation Class Name: com.apress.javaxmlws.impl.ProjectPortTypelmpl
Deployment Descriptors: ek ml
sur-wehxml

|

[&] http:/flocalhost: 4848fasadminfadminguifwebServiceGener alPwebServiceGeneral webSer viceGeneral wsdlLink=gfileName=services. wsdlgw G Unknown Zone (Mized)

Figure 14-14. Selecting services.wsdl

Run the ProjectClient application by selecting Run As » Run. Listing 14-24 shows the output
from running ProjectClient. java.

Listing 14-24. Output from ProjectClient. java

com.apress.javaxml.ws.client.ProjectClient doProjectServ
iceTests

INFO:

Begin ProjectService Tests

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Create service for:http://d207-6-39-2.bchsia.telus.net:8080/projectservice
/ProjectPortTypeImplService?WSDL

com.apress.javaxml.ws.client.ProjectClient doProjectServ

413



414

CHAPTER 14 BUILDING XML-BASED WEB SERVICES

iceTests

INFO: Authenticate user:dvohrao9@yahoo.com:administrator
com.apress.javaxml.ws.impl.LoggingHandler log

INFO: <?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv="http://schemas.xmls
oap.org/soap/envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:nsi="
http://www.apress.com/xmljava/webservices/schemas" xmlns:ns2="http://www.apress.
com/xmljava/webservices/definitions"><soapenv:Header><nsi:userInfo><email>dvohra
@yahoo. com</email><pwd>administrator</pwd></nsi:userInfo></soapenv:Header><soape
nv:Body><nsi:authDetail><nsi:authScope><scope>session</scope></nsi:authScope></n
sl:authDetail></soapenv:Body></soapenv:Envelope>
com.apress.javaxml.ws.impl.LoggingHandler log

INFO: <?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv="http://schemas.xmls
oap.org/soap/envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:nsi="
http://www.apress.com/xmljava/webservices/schemas" xmlns:ns2="http://www.apress.
com/xmljava/webservices/definitions"><soapenv:Header><nsi:userInfo><email>dvohra
@yahoo. com</email><pwd>administrator</pwd></nsi:userInfo></soapenv:Header><soape
nv:Body><nsi:authDetail><nsi:authScope><scope>session</scope></nsi:authScope></n
sl:authDetail></soapenv:Body></soapenv:Envelope>
com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: User is authorized

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Uploading zip file:testproject.zip
com.apress.javaxml.ws.impl.LoggingHandler log

INFO: ------ = Part_0 26171428.1151199877220

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.or
g/soap/envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:nsi="http:/
/www.apress.com/xmljava/webservices/schemas" xmlns:ns2="http://www.apress.com/xm
ljava/webservices/definitions"><soapenv:Header><nsi:userInfo><email>dvohra09@yahoo
.com</email><pwd>administrator</pwd></ns1:userInfo></soapenv:Header><soapenv:Bod
y><nsil:manifest name="testproject.zip" email="dvohra09@yahoo.com"><folder location
="popuptest/"><document name="error.html"></document><document name="index.jsp">
</document><document name="login.html"></document></folder><folder location="pop
uptest/WEB-INF/"><document name="web.xml"></document><document name="weblogic.xm
1"></document></folder></nsi:manifest></soapenv:Body></soapenv:Envelope>

------ = Part 0 26171428.1151199877220

Content-Type: application/octet-stream

Content-ID: <zip=7c8243a2-3223-4891-9336-11ab17a7€926@jaxws.sun.com>
Content-transfer-encoding: binary

------ = Part_2_24166053.1151199960199--
com.apress.javaxml.ws.client.ProjectClient doProjectServ
iceTests

INFO: Begin Zip Entries:
com.apress.javaxml.ws.client.ProjectClient doProjectServ
iceTests

INFO: Zip entry:popuptest/WEB-INF/web.xml
com.apress.javaxml.ws.client.ProjectClient doProjectServ



CHAPTER 14 BUILDING XML-BASED WEB SERVICES

iceTests

INFO: Zip entry:popuptest/WEB-INF/weblogic.xml
com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Zip entry:popuptest/error.html

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Zip entry:popuptest/index.jsp

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Zip entry:popuptest/login.html

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: End Zip Entries

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO: Remove Project:dvohra09@yahoo.com:testproject.zip

com.apress.javaxml.ws.impl.LoggingHandler log

INFO: <?xml version="1.0" ?><soapenv:Envelope xmlns:soapenv="http://schemas.xmls

oap.org/soap/envelope/" xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:nsi="

http://www.apress.com/xmljava/webservices/schemas"” xmlns:ns2="http://www.apress.

com/xmljava/webservices/definitions"><soapenv:Header><nsi:userInfo><email>dvohra

@yahoo. com</email><pwd>administrator</pwd></ns1:userInfo></soapenv:Header><soape

nv:Body><nsi:remove name="testproject.zip" email="dvohra09@yahoo.com"></ns1:remove
></soapenv:Body></soapenv:Envelope>

com.apress.javaxml.ws.client.ProjectClient doProjectServ

iceTests

INFO:

End ProjectService Tests

Summary

This was a capstone chapter that drew from many concepts covered in this book.

Building a XML-based web service starts with formally describing a web service in a WSDL
document. Specifying a WSDL document starts with describing user-defined data types in a schema
definition. The user-defined data types are the basic building blocks for defining various messages
types required by the web service use cases. The message types are then used in defining a port type,
which defines a web service interface.

The web service message types and port types are abstract types. To make these types concrete,
you need to bind these types to the SOAP messaging framework and the HTTP transport protocol.
Finally, the concrete binding of the port type is bound to an HTTP URL, which defines a web service
port. We covered all these concepts in this chapter in the context of a complete web service example.

AWSDL document contains enough information that code generation tools can easily generate
the Java code associated with implementing a web service provider agent. In addition, code genera-
tion tools can use a WSDL document to generate a service proxy that can be used by a web service
requestor agent to interact with the web service. In this chapter, we used Sun One Application Server
9.0 tools to generate Java code corresponding to an example web service and then build and deploy
the web service in Sun One Application Server 9.0. Finally, we showed how to build a web service
client that can interact with the web service.

415






Index

- (hyphen) character, use of in element tag
names, 6

&gt; character sequence, using to escape >, 8

&lt; character sequence, using to escape <, 8

* (asterisk) character, meaning of in a node
name test, 92

. (period) character, as abbreviation for the
self::node() combination, 91

.. (period period) character sequence, as
abbreviation for the parent::node()
combination, 91

/ (forward slash), designating an absolute
location path with, 88

/1 character sequence, as abbreviation for the
//descendant-or-self::node()
combination, 91

// syntax construct, meaning of, 88

@XmlRootElement annotation, defining the
journal attribute with, 180

_ (underscore) character, use of in element tag
names, 6

< and > characters

for delimiting a start tag within an element, 6
using &lt; and &gt; character sequences to

escape, 8

</ and > character sequence, for delimiting an
end tag within an element, 6

A

abort() method, for cancelling the current
HTTP request, 331

abstract message definitions, defining those
used by the example web service,
376-378

abstract request message, for getting all the
projects for a user, GetProjects, 376

acceptNode() method, table of return values
for, 280

action values, table of commonly used with
xindice command, 223

ActiveXObject API

introduced by Microsoft within Internet
Explorer (IE) 5, 330
website address for downloading, 330

ad action, in Xindice specifying that an XML
document be added, 227

addNamespace(java.lang.String prefix,
java.lang.String uri) method, function
of, 106

addNewArticle() method, for adding
an Article object to a
noNamespace.JournalDocument.
Journal object, 198
addNewJournal() method, for adding a Journal
element and setting the attribute
publisher, 198
address.xsd (U.S. or Canadian address schema),
code for, 141-142
agent, as a concrete software implementation
of the SEI, 355
agents and services, 355
Ajax
building web applications with, 329-351
common useful applications of, 329
Ajax application
browser-side processing, 338-340
creating a Connection object in, 340
creating an XMLHttpRequest object for,
338-339
developing for validating data input in an
HTML form, 337-351
input form code, 338
obtaining the value of the <valid> element
in, 343
obtaining the value of the responseXML
property in, 343
opening an HTTP request in, 339
retrieving the value of the catalogld
parameter, 340
returning an XML response in, 341
setting the validation message for the
nonvalid Catalog ID, 343
setting the validation message in, 343
two-step process for connecting to
database, 340
all model groups, function of, 13-14
Amazon, website address for, 353
Amazon web service, website address for,
354-355
ancestor:: axis specification value, 90
ancestor-or-self:: axis specification value, 90
annotation tags, used in ProjectPortType.
java, 394
annotations, use of in JAXB 2.0, 164
Apache Ant
invoking on the build.xml file, 400
website address for information about, 333
Apache Ant build targets, selecting to
compile and deploy the Ajax web
application, 336

a7



418

INDEX

Apache Ant build.xml file
output of, 337
running to compile and deploy the Ajax web
application, 337
targets, 334
using to compile and deploy an Ajax
application, 333-335
Apache Derby, website address for, 386
Apache FOP. See also Apache Formatting
Objects Processor (FOP) API
website address for downloading, 311
Apache FOP JAR files, needed for developing an
XML to PDF conversion application,
311
Apache FOP packages, needed for generating a
PDF document from an XSL-FO
document, 321
Apache Formatting Objects Processor
(FOP) API
for converting XML documents to PDF or
other formats, 311-325
utility for transforming XML content into
Portable Document Format (PDF), 4
Apache POI 2.5.1, downloading and
installing, 290
Apache POI AP], utility for transforming XML
into MS Excel spreadsheets, 4
Apache POI HSSF API
converting an XML document to an Excel
spreadsheet with, 291-301
website address for information about, 290
app directory, in Chapterl4 project, 387
application server
downloading and installing one that
supports J2EE 1.4, 331-332
use of interchangeably with web server, 330
Apress website, for downloading Java projects
for applications in book, 29
Arguments field, setting the arguments passed
to the xindice command in, 224
Arguments tab, setting Java application
arguments in, 28-29
article element
adding level and date attributes to, 155
adding to a journal element, 155, 175
setting the level and date attributes for, 175
setting the title and author elements, 155
setting the title and author elements for, 198
Article object, adding to a
noNamespace.JournalDocument.
Journal object, 198
Article objects
obtaining a list of, 158
retrieving from a list, 158
//article[ancestor::;journal[@title='Java
Technology'll, XPath expression, 88
ArticleType object
code for creating, 175
retrieving from a list, 178

ArticleType.java class, generated for the
complex type articleType, 173
Asleson, Ryan and Nathaniel T. Schutta,
Pro Ajax with Java Frameworks
(Apress, 2006) by, 329
asterisk (*) character, meaning of in a node
name test, 92
Asynchronous JavaScript and XML (AJAX).
See also Ajax
coined by Jesse James Garrett of Adaptive
Path, 329
Attr interface methods, table of, 43
attribute construct, specifying an attribute
declaration in a schema with, 14-15
attribute declarations, specifying in a schema,
14-15
attribute groups, function of, 15
attribute list length, method for returning, 44
attribute:: axis specification value, 90
attributeGroup, defining in a schema,
complexType, and attributeGroup, 15
attributes, methods for returning count of, local
name, and value, 58
authDetail schema element, for example web
service in types.xsd, 376
author element, setting for an article element,
155,175
authScope schema element, for example web
service in types.xsd, 376
autocompletion, using Ajax for, 329
automatic escaping, disabling, 127
axis specification values, list of possible, 90-91
axis specifier
annotations on the data model, 89
function of in location path construct, 89-91
for starting location path steps, 88

-b <file> xjc command option, for specifying the
external binding file, 149
background color and foreground color,
methods for setting, 293
beginElement(String) method, creating a new
element with, 206
Beginning JavaScript with DOM Scripting and
Ajax, by Christian Heilmann (Apress,
2006), 329
Berkeley DB XML, website address for
information about, 216
bidirectional binding, supported by
JAXB 2.0, 164
binding. See also object binding
with XMLBeans, 185-211
XML-to-Java with XMLBeans, 185-211
binding compiler (xjc), function of in JAXB AP],
140-141
binding declarations
syntax of, 162
types of, 160



binding example, simple revisited, 166-169
binding.xjb file, for customizing JAXB 2.0
bindings, 392-393
Boolean datatype, 88
border color, setter methods for setting, 293
border settings, methods for setting, 292
border types, table of commonly used, 292
Browse for Folder dialog box, selecting a project
directory in, 30
build path. SeeJava build path
build.xml file
example of, 334-335
invoking Ant on, 400
output from, 402
built-in datatypes, table of commonly used in
XML Schema language, 12

C

-c switch
for specifying the collection context as
catalog, 235
specifying the collection context as the
catalog collection, 227, 228, 233
cache-control header, setting the content type
to no-cache in the Ajax application, 341
CallableStatement object, retrieving an
SQLXML object from, 252
cardinality, specifying of a construct, 14
catalog document, code for transforming
catalog document into an HTML
document, 112
catalog element
adding a journal element to, 175
code for adding attributes, 255
declaration, 12
Catalog Entry input form, example of, 348
catalog ID field value, specifying, 349
Catalog object, adding to a
noNamespace.catalogDocument
object, 198
catalog schema, binding to Java classes,
149-153,171-174
catalog_inline.xsd, with inline binding
declarations, 160-161
catalogAttrGroup, defining in an XML
Schema, 15
CatalogDocument object, creating, 204
CatalogDocument.java
key points about, 196
org.apache.xmlbeans.XmlObject interface
extended by, 196
catalog.fo, generated from the transformation
of an XML document, 319-321
CatalogID value
setting, 257
using the encodeURIComponent(string)
method to encode, 339
catalog.java, code for, 152

INDEX

Catalog.java class
complete code for, 180-182
generating an XML Schema document from
the annotated, 182-183
/catalog/journal[@title='Java
Technology'|/article[2], XPath
expression, 87
/catalog/journal/article[@level="Advanced'] /tit
le, XPath expression, 87
catalog.jsp, page inputForm.jsp is forwarded to
when there is no error updating the
database, 347
catalog.pdf, Chapter12 project directory
structure including, 325
CatalogType, marshaling to an XML document,
175-177
CatalogType object, creating with the
createCatalogType() method of
ObjectFactory class, 174
CatalogType.java
code for, 152, 172-173
value class generated for the complex type
catalogType, 171
catalog.xml
code for document that is added to the db
database, 226
code for Chapter2 project, 39-40
code for Chapter3 project, 69
example XML document for Chapter12
project, 314-315
example XML document for the Chapter7
project, 187
example XPath expressions XML
document, 86
file for Chapter10 project, 271
output in Eclipse from unmarshaling, 160
using for storing XML in relational databases
examples, 250
using XMLBeansUnMarshaller.java to
unmarshal, 201-202
XPath data model for, 87
catalog.xsd
example schema for the Chapter7 project,
186-187
file for Chapter10 project, 271-272
running the xjc compiler on, 171
catalog.xsd schema, code for Chapter3
project, 70
catalog.xsdconfig
for mapping binding schema target
namespace to a package name,
196-197
for mapping binding schema to a custom
package name, 196-197
catalog.xslt, for converting example XML
document to an XSL-FO document,
315-317
CDATA construct, enclosing element content
within, 7

419

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




420

INDEX

cell alignment types, representing using a short
value, 293
cell style
code example for setting, 292
using the HSSFCellStyle class to set, 292
cell text, adding text rotation to, 293
Chapter 6 Eclipse project, directory
structure, 170
Chapter10 project
catalog.xml for, 271
catalog.xsd XML Schema for validating the
document, 271-272
Java build path and directory structure, 270
Chapterl1 project
build path and directory structure, 291
downloading and installing, 290-291
Chapterl2 project
converting the XML document to an XSL-FO
document, 315-317
example XML document for, 314-315
Java build path and directory structure,
312-313
setting the system properties for, 317-318
website address for downloading, 312
Chapter13 build.xml dialog box, selecting the
Ant build targets in, 336
Chapter13 project
downloading and setting up, 333-337
Java build path and directory structure,
335-336
Chapterl4 project
building, 400-402
downloading and importing into Eclipse, 386
Java build path, 388
project folders for, 387
refreshing the files for, 393
setting up the Eclipse project for, 386-388
Chapter2 project
directory structure, 41
Java runtime environments (JREs), 40
Chapter3 project
downloading code for and importing into
Eclipse, 68
verifying that catalog.xml and catalog.xsd
appear in, 70-71
Chapter4 project, downloading and setting up,
95-96
Chapter5 project
catalog.xml code for, 120
directory structure, 121
Chapter6 project
directory structure JABX 1.0, 149
Java build path and source path for
JABX 1.0, 148
website address for downloading for
JABX 1.0, 147
Chapter6-JAXB2.0 JRE, setting to the J2SE 5.0
JRE, 169

Chapter6-JAXB2.0 project
directory structure, 170
website address for downloading, 169
Chapter? project
adding xmltypes.jar to the Java build
path, 194
directory structure, 189
directory structure with the Java classes
generated from the schema, 194
JAR files required for, 188
Java build path, 188
setting up, 187-189
website address for downloading, 188
Chapter8 JRE, setting to the J2SE 5.0 JRE, 220
Chapter8 project
adding the JAR files to the Java build path,
219-220
directory structure, 221
Java build path, 220
website address for downloading, 219
Chapter9 project
directory structure, 252
Java build path, 251
website address for downloading, 251
char(] array, adding text from, 255
child:: axis specification value, 90
/child::catalog/child:;journal/child::article[attri
bute::date='January-2004']/attribute::1
evel, XPath expression, 88
choice model groups, function of, 13
class binding declarations, 160
specifying with the class element in a
schema element, 163
-classpath <arg> xjc command option, for
specifying the classpath, 149
clean target, for deleting the project
directories, 334
Client fault code, Soap 1.1, 367
close() method
closing the FileOutputStream object
with, 295
using to close the Driver object, 322
code example
for adding a Journal element and setting the
attribute publisher, 198
for adding a journal element to a catalog.xml
document, 233-234
for adding a journal element to the catalog
element, 154
adding a journal element with a publisher
attribute, 206
for adding an article element to a journal
element, 155, 175
for adding an Article object and setting
attributes, 198
for adding an email attribute to a string
built-in type, 15
for adding a new user to the user table, 332
for adding a simpleContent restriction, 16



for adding Catalog object to a
noNamespace.catalogDocument
object, 198

for adding elements to an XML document,
302-303

adding namespace to an XPath object, 107

for adding rows to the subelements of a stmt
element, 294

adding stmt elements to construct an XML
document, 302

for adding the catalog element
attributes, 255

adding the elements journal, article, and
title, 255

adding the end of the document, 255

for adding the spreadsheet header row, 293

for adding the title element text, 255

for addressing a node with XPath, 94

Ajax application input form, 338

applying templates with parameter
values, 118

Arguments field to set schema to be
compiled with scomp compiler, 191

basic outline of a WSDL 1.1 document,
371-372

of the basic syntax of the xindice
command, 222

binding def:DownloadProject to a SOAP 1.1
message, 381

for binding the SOAP 1.1 messaging to the
HTTP message transport, 379

build.xml file, 334-335

for casting the Node object to Element, 45

catalog_inline.xsd with inline binding
declarations, 160-161

catalog2.xml, 130

CatalogDocument.java schema element
catalog, 195

catalog.fo generated from the
transformation of an XML document,
319-321

catalog.java, 152

catalog.jsp, 347

catalogType.java, 152

CatalogType.java, 172-173

catalog.xml example document for Chapter3
project, 69

catalog.xml example document for Chapter7
project, 187

catalog.xml for Chapter10 project, 271

catalog.xml for XSLT Chapter5 Eclipse
project, 120

catalog.xsd example schema for the
Chapter7 project, 186-187

catalog.xsd for example use case, 145

catalog.xsd schema, 70

catalog.xsd XML Schema for validating the
document, 271-272

class binding declaration, 163

INDEX

complete code sequence to instantiate the
DocumentBuilderFactory, 42

of a complete example schema document,
18-19

of complete example XML document, 10

the complex type catalogType, 171

conditional application of the template, 119

constructing an XML document conforming
to catalog.xsd schema, 146

for constructing a spreadsheet, 294-295

contents of project.ear, 402

contents of projectejb.jar, 400-401

contents of projectservice.war, 401

for converting a Java object tree to an XML
document, 174

for converting an Excel spreadsheet to an
XML document, 303-309

for converting an XML document to an
XSL-FO document, 315-317

for converting an XML document to a PDF
document, 323-324

copy.xslt for copying nodes, 133

createElement.xslt, 134

for creating a CatalogDocument object, 204

for creating a collection from a
CollectionManager object, 238

for creating a Collection object in db, 238

creating a Connection object in the Ajax
application, 340

creating a database table, 256

for creating a DocumentBuilderFactory, 71

for creating a Document object, 239

for creating a DOMImplementation, 272

for creating a DOM parser, 72-73

creating a DOMSource object, 124

for creating a FOP driver object, 321-322

creating a Java object tree for marshaling
into an XML document, 174

for creating a JournalType object, 175

for creating a Marshaller object, 154

for creating an Article object, 155

for creating an ArticleType object, 175

for creating a new instance of the
JAXBContext class, 174

for creating an example table in the MySQL
database, 332

for creating an Excel workbook and
spreadsheet, 292

for creating an InputSource object, 98

for creating an InputSource object and
evaluating an XPath expression, 101

for creating an instance of the
SAXParserFactory, 49

for creating an instance of the Xindice
database, 238

for creating an instance of the
XMLHttpRequest object in IE 6, 330

for creating an LSInput object, 280

for creating an LSOutput object, 276

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




INDEX

creating an LSParser, 272

for creating an LSParser, 279

for creating an LSSerializer object, 276

for creating an object of type
CatalogDocument, 197

for creating an UnMarshaller object, 157, 177

for creating an XML cursor, 207

creating an XML cursor, 208

for creating an XML document, 302

for creating an XMLEventReader object in
StAX, 62

creating an XMLHttpRequest object for the
Ajax application, 338-339

creating an XMLStreamReader object, 57

for creating an XMLStreamReader
object, 258

for creating an XPath object, 97

creating a PreparedStatement, 256

for creating a SAX parser, 53

for creating a SAXParserFactory object, 76

for creating a SAX parser object, 77

for creating a Statement object, 257

creating a Transformer object, 122

for creating a Transformer object for the
Chapterl2 project, 318

creating a Transformer object from a
Templates object, 122

customizations for WSDL 1.1 to Java
mapping: svcbindings.xml, 391-392

for customizing a handler chain for a logging
handler, 391

for customizing Java method name for
download wsdl:operation, 391

for customizing MIME content, 391

for customizing the Java bindings package
name, 390

CustomSAXHandler class, 51-52

datatype binding declaration, 163

for DefaultHandler class for the SAX
parser, 77

defining all model groups within a named
model group, 14

defining an element in an XML
Schema-based schema, 12

for defining an XML declaration, 6

for defining attribute groups, 15

defining comments within a comment
declaration, 8

defining ordered lists of elements in an XML
Schema, 13

defining the catalogType as a complex
type, 13

for defining the journal attribute, 180

for defining the Validator class, 73

defining two wsdl:part elements, 381

defining unordered lists of elements in an
XML Schema, 14

for deleting and modifying a journal
element, 234-235

for deleting an XML resource, 242

for directly evaluating an expression without
compilation, 99

for disabling automatic escaping of a
character, 127

of DOM parsing application
DOMParser.java, 46-47

DOM3Filter.java, 283-284

DOM3Writer.java, 277-278

download as a request-response
wsdl:operation, 378

download wsdl:operation mapped to a Java
method, 395

downloading a project SOAP 1.1 request
message, 369

downloading a project SOAP 1.1 response
message, 369-370

DownloadZip message, 377

of an element corresponding to a
simpleType declaration, 18

of an empty element, 7

enclosing element content within a CDATA
construct, 7

error handler class, 273

for ErrorHandler class for the JAXP 1.3
Validation API, 81

error.jsp, 347

ErrorListener implementation class, 123

for evaluating an XPath expression, 98

event handler for the onreadystatechange
property change event, 340

for example XML document, 11-12

of example XML document: catalog.xml, 86

of an example XML document parsed into a
tree structure, 35

of an example XSLT style sheet, 113-114

external binding declaration for a package
name, 142

external binding declaration for a package
name for JABX 2.0, 166

external binding declaration with model
group binding style, 144, 168

for filtering input, 281

filter.xslt, 132

FormServlet.java, 341-343

generated code in ProjectPortType.java,
395-397

for generating parse events, 258

getting a Catalog object from a
CatalogDocument object, 200

for getting an Article object array from the
Journal object, 201

global binding declarations, 162

of how to parse an XML document from a
File object, 42

htmlITransform.xslt for generating an HTML
file, 129

identityTransform.xslt, 126-127

implementing ErrorHandler, 42



for importing the types.xsd schema
definition into WSDL 1.1
document, 376

for importing the XmlICursor API, 203

incomestatements.xml, 289-290

indent.xslt style sheet that adds indentation
to an XML document, 134

for initializing and adding data to an
SQLXML object, 254

for the InputFilter class, 281

for instantiating the TransformerFactory
class, 122

for an internal DTD for an XML document, 9

JAXB 2.0 customizations: binding.xjb,
392-393

JAXBMarshaller.java, 155-156, 176-177

JAXBUnMarshaller.java, 159

for JAXBUnMarshaller.java, 179-180

loading a JDBC driver, 252

login-config.xml, 333

for making implicit entities explicit, 10

for mapping binding schema target
namespace to a package name,
196-197

for mapping binding schema to a custom
package name, 196-197

mapping of defs:ProjectSoapBinding port
type binding to
ProjectPortTypelmplPort port, 385

mapping wsdl:fault to soap:fault, 382

for marshaling the Catalog object to an XML
file, 155

for marshaling the JAXBElement to an
output stream, 176

merge.xslt, 131

modified XML document in the Xindice
database, 235

of a modified XML document with a journal
element added, 206

for moving the cursor to the start of the first
title element, 205

moving the cursor to the start of the journal
element, 206

for moving the XML cursor to the start of the
catalog element, 207

MySQL database data types, 253

for NamespaceContextImpl.java class,
100-101

ObjectFactory.java, 173-174

for obtaining a CatalogDocument object and
creating a cursor, 206

obtaining a collection from DriverManager?
*s/b DatabaseManager?, 239

for obtaining a DOMConfiguration
object, 273

for obtaining a List<JournalType>
object, 178

for obtaining a List of ArticleType
objects, 178

INDEX

for obtaining a List of Journal objects for a
Catalog object, 158

for obtaining an XMLStreamWriter
object, 254

for obtaining a parsing event, 57

for obtaining a resultCursor, 208

for obtaining a ResultSet object, 341

for obtaining a spreadsheet from an Excel
workbook, 302

for obtaining the text value of an element
with a text node, 46

obtaining the value of the <valid> element in
the Ajax application, 343

obtaining the value of the responseXML
property in the Ajax application, 343

for opening an HTTP request in the Ajax
application, 339

for output filter class OutputFilter, 282

of output from adding a collection in the
Xindice database, 226

output from building build.xml, 402

of output from converting XSL-FO to
PDF, 325

output from marshaling an XML document
with XMLBeans, 200

output from running wsimport tool, 393-394

output from SAXParserApp application,
55-56

of output from the DOMParser
application, 48

output from the XPathEvaluator.java
application in the Eclipse IDE, 102-105

output from the XPath query of an XML
document, 230

output from XMLBeansUnMarshaller.jave,
202-203

output in Eclipse from copying nodes, 133

output in Eclipse from deleting a collection
catalog, 236

output in Eclipse from deleting an XML
document, 235

output in Eclipse from filtering elements, 133

output in Eclipse from merging XML
documents, 131

output in Eclipse from navigating an XML
document, 205

output in Eclipse from querying an XML
document, 231

output in Eclipse from removing
duplicates, 127

output in Eclipse from running the
XIndiceDB.java application, 246-247

output in Eclipse from selecting an attribute
with XQuery, 208

output in Eclipse from sorting, 128

output in Eclipse from the DOM3Writer.java
application, 278

output in Eclipse from unmarshaling
catalog.xml, 160

423

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




INDEX

output in Eclipse from updating an XML
document, 233

output in Eclipse of the title elements
selected with XPath, 207

output in Eclipse with createElement.xslt, 134

output in Eclipse with XPath node
selection, 132

for outputting a DOM document model to a
String, 276

for outputting a modified document with the
toString() method, 206

for outputting an XML document, 276, 303

for outputting article element attributes and
subelements, 158, 179

for outputting data types, 253

for outputting section and publisher
attributes, 158

for outputting text, 59

outputting text, 259

for outputting the attribute name and
value, 58

outputting the attribute values, 259

for outputting the element name, 58

for outputting the element values, 259

for outputting the journal node, 276

for outputting the resultCursor XML
fragment, 208

for outputting the section and publisher
attributes, 178

outputting the title element values, 207

outputting the value of the element at the
current cursor position, 205

for overriding the default parameter
value, 118

for parsing an XML document to create a
Document object, 318

for parsing an XML document to obtain a
Document object, 294

for parsing an XML document using the
LSParser, 273

parsing an XML document with XML
Beans, 200

for popping the current location of XML
cursor off the stack, 207

ProjectLocal EJB in ProjectLocal.java, 399

for querying using the Xindice command
tool and XPath query language, 217

querying Xindice database using an XPath
query, 240

registering a callback event handler with the
XMLHttpRequest object, 339

removeDuplicates.xslt, 127

response message for third use case, 362

toretrieve a DOM implementation for saving
an XML document, 276

for retrieving an attribute node with
XPath, 94

for retrieving a NodeSet, 99

for retrieving a node with the DOM, 94

for retrieving a ResultSet, 257

for retrieving Article objects from a list, 158

retrieving article objects from a list, 178

for retrieving attribute values, 44

retrieving database metadata, 252

retrieving journal objects for a catalog
object, 178

for retrieving nodes in a NodeList, 45

for retrieving nodes in the root element, 45

for retrieving root element attributes, 44

retrieving the attribute publisher with the
getPublisher() method, 201

for retrieving the root element name, 44

for retrieving the SQLXML object, 258

for retrieving the value of the catalogld
parameter with, 340

returning an XML response in the Ajax
application, 341

of aroot element containing a nested
element, 7

root wsdl:definitions element with relevant
namespace declarations, 373

SAXParserApp.java, 53-54

schema binding declaration, 162

of a schema document with its root
element, 12

schema types for example web service in
types.xsd, 373-375

SEI implementation in
ProjectPortTypelmpl.java, 397-399

selecting an attribute node, 106

selecting an element node with the
selectSingleNode() method, 107

selecting element nodes with the
selectNodes() method, 107

selecting XML nodes with XPath, 207

for sending an HTTP request in the Ajax
application, 339

service: ProjectPortTypelmpl.java, 407-408

for setting an SQLXML value, 256

for setting a Validator instance as an error
handler, 73

for setting cell style, 292

for setting cell-style indentation and adding
text wrapping, 293

setting error handling, 273

setting ErrorListener, 124

for setting filtering on LSSerializer, 282

for setting filtering on the LSSerializer
object, 282

for setting parser properties, 77

for setting section and publisher attributes in
XML documents, 154

for setting the background and foreground
color of spreadsheet cells, 293

for setting the border color of spreadsheet
cells, 293

for setting the cell style, 295



for setting the content type of the
HttpServletResponse and
cache-control header, 341

for setting the font for a spreadsheet, 293

for setting the level and date attributes for an
article element, 155

for setting the namespace context on the
XPath object, 101

for setting the renderer type to
Driver. RENDER_PDF, 322

setting the Schema validation, 273

setting the section and publisher
attributes, 175

for setting the style sheet to sort.xslt, 124

setting the system properties for the
Chapter12 project, 317-318

for setting the title and author elements for
an article element, 155, 175, 198

for setting the validating attribute to true, 49

setting the validation message for the
nonvalid Catalog ID, 343

for setting the validation message in the Ajax
application, 343

for setting the validation schema for a factory
instance, 72

setting the XML document as a string,
255-256

for setting validation features for the
SAXParserFactory, 77

show the output from ExcelToXML.java, 309

showing complete wsdl:portType for the
example web service, 378-379

showing output from running
JAXBMarshaller.java, 157

showing SAX parsing error, 57

showing the complete Catalog.java class,
180-182

showing the fully configured mysql-ds.xml
file, 333

showing the inputForm.jsp page, 344-347

showing the output from the StAXParser
application in Eclipse, 60-62

of a simple binding example, 141-142

SOAP 1.1/HTTP binding for
ProjectPortType, 382-384

SOAP 1.1 request message for third use
case, 361

SOAP fault message example, 367

soap:operation binding for defining
download wsdl:operation, 381

sort.xslt, 128

for specifying a catalogAttrGroup in a
schema, complexType, and
attributeGroup, 15

specifying a complexContent extension, 17

specifying a complexContent restriction, 17

specifying an internal DTD within an XML
document, 9

INDEX

specifying a paramerter with the value
paraml, 118

for specifying a simpleContent extension, 15

for specifying a simpleType construct as alist
of values, 18

for specifying a union of chapterNumbers
and chapterNames, 18

specifying authorType as a simple restriction
on a built-in string type, 17

specifying a variable with the value varl, 118

for specifying chapterNames as a list of
string values, 18

specifying default and nondefault XML
Namespace URIs, 11

for specifying location of a no-namespace
schema, 67

for specifying the cardinality of a
construct, 14

for specifying the column width of the first
column of a spreadsheet, 293

for specifying the location of a
namespace-aware schema, 67

for StAXParser.java complete cursor API
parsing application, 59-60

syntax for an external, parsed general
entity, 9

syntax for an external, unparsed general
entity, 9

syntax for an internal, parsed general
entity, 9

syntax for a public, external, parsed general
entity, 9

of syntax for processing instructions in XML
documents, 8

syntax of binding declarations, 162

for a top-level catalog element
declaration, 12

for transforming a catalog document into an
HTML document, 112

for transforming an XML document to
XSL-FO, 319

transforming the source tree to a result
tree, 124

unmarshaling an XML document, 178

for updating a ResultSet database row, 257

UserLocal EJB in UserLocal.java, 400

using a choice mode group, 13

using an attribute declaration, 15

using a sequence model group, 13

using attributes in elements, 7-8

using createSQLXML() method, 254

using generatelsSetMethod, 163

using newInstance(String contextPath), 154

using nextEvent() and getEventType()
methods, 62

using setNamespaceAware() and
setValidating() methods, 76

using text content in elements, 7

425

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




INDEX

using the free() method to free SQLXML
object resources, 256

using the writeEndElement() method, 255

using the writeStartDocument(String
encoding, String version) method, 254

using the writeStartElement(String
localName) method, 254

using xsl:value-of element, 119

UsOrCanadaAddress class code, 166-168

UsOrCanadaAddress derived with
generateValueClass set to false,
168-169

UsOrCanadaAddressType derived with
model group binding style, 144

UsOrCanadaAddressType interface
code, 143

for validating an XML document using a
parser, 73

web service client: ProjectClient.java,
408-412

web.xml, 339

WSDL 1.1 message definitions for example
web service, 377-378

xindice command for creating a top-level
collection named catalog, 226

xindice command to add an XML document
to a collection, 227

xindice command to delete an XML
document, 235

xindice command to delete the collection
catalog, 236

xindice command to query an XML
document, 230

xindice command to retrieve an XML
document, 228

of an xindice command to update an XML
document, 233

xindice message of output in Eclipse from
adding an XML document, 228

XIndiceDB.java, 242-246

of XML declaration with encoding and
standalone attributes, 6

of XML document that is added to the db
database, 226

of an XML element, 6

XML source document describing a catalog
of journals, 112

XMLBeansCursor.java, 209-211

XMLBeansMarshaller.java, 198-199

XMLBeansUnMarshaller.java, 201-202

XML:DB API packages, 237

for XMLToSQL.java, 260-264

xpath.xslt, 132

XQuery expression to select a level
attribute, 208

xsl:apply-templates element within an
xsl:template element, 117

of an xsl:attribute element that creates the
attribute title, 119

xsl:call-template element, 117
of xsl:copy-of element, 119
of xsl:element that creates a table
element, 119
xsl:for-each element, 118
xsl:output element, 116
xsl:stylesheet element, 116
of an xsl:template element, 116
for XSLTTransformer.java for all
transformation examples, 124-126
XUpdate configuration for deleting an
element, 241
XUpdate configuration for modifying an
element, 241
collection context, query performed over,
217-218
CollectionManager object, creating a collection
from, 238
collectionType attribute, function of in the
globalBindings element, 162
column headers, adding to the header row, 293
com.apress.jaxbl.example, external binding
declaration for a package name, 142
comment(), function of as node test, 91
comment declarations, example of, 8
comments, defining in XML documents, 8
compile target, for compiling a Java servlet in
the Ajax application, 334
complex content, function of, 17
complexContent element, for specifying a
constraint on elements (including
attributes), 17
complexType construct, specifying a
simpleContent construct in, 15-16
complexType declarations, function of, 13-16
conditional processing, elements provided by
XSLT specification for, 119
[config.xsdconfig]*, scomp command, 190
Connection object, creating an SQLXML object
from, 254
console logger, creating and setting level for,
321-322
constraining facets
for restricting the content of a built-in simple
type, 16
table of, 16
ContentHandler event methods, table of
SAX 2.0, 36
copying nodes, 133
Create a Java Project screen, specifying a Java
project name in, 20
Create Catalog button, for creating a catalog
entry, 350
createArticle() method, for creating an Article
object, 155
createArticleType() method, for creating an
ArticleType object, 175



createCatalogType() method of ObjectFactory
class, creating a CatalogType object
with, 174
createCell(short) method
for adding column headers to the header
row, 293
creating a spreadsheet cell with, 294
createCellStyle() method, for creating a cell
style object, 292
createCollection method, for creating a
collection from a CollectionManager
object, 238
createElement.xslt, code for, 134
createFont() method, setting the font for a
spreadsheet with, 293
create]DBCConnection() method, in the
XMLToSQL.java application, 260-264
createJournalType() method, creating a
JournalType object with, 175
createRow(int rowNumber) method, for
creating a row in a spreadsheet, 293
createSheet(String sheetName) method, of the
HSSFWorkbook class, 292
createSQLXML() method, using to create an
SQLXML object, 254
createUnmarshaller() method
for creating an UnMarshaller object, 177
creating an UnMarshaller object with, 157
createXMLStreamWriter() method, for adding
data to an SQLXML object, 252
cursor API. See also StAX cursor API
using an XMLStreamReader object to parse
an XML document, 57-62
CustomSAXHandler class
error handler methods in, 51
key points about, 51

D

-d <dir> xjc command option, for specifying the
directory for generated files, 149

data refreshes, using Ajax for, 329

database, selecting for Chapter9 project,
252-253

database table, creating to store an SQLXML
object, 256

database tools, for storing XML, 249

DatabaseImpl driver class, for Xindice
database, 238

databases and XML, 213-264

data-binding applications, StAX API
recommended for, 38

datatype binding declarations, specifying with
the javaType element, 163

datatypes

resulting from an XPath expression
evaluation, 88
XML Schema language built-in, 12

date attribute, setting for an article element,

155,175

INDEX

dbXML, website address for information
about, 216
dd action, for specifying that an XML document
be deleted, 235
descendant:: axis specification value, 90
descendant-or-self:: axis specification value, 91
//descendant-or-self::node()/, abbreviation
for, 91
DefaultHandler helper class, for implementing
the ContentHandler and ErrorHandler
interfaces, 51-52
def:DownloadProject, binding to a SOAP 1.1
message, 381
defs:DownloadZip abstract message, contents
of for binding wsdl:output, 382
defs:ProjectSoapBinding port type, mapped to
ProjectPortTypelmplPort port, 385
delimiter characters, use of in elements, 6-8
detail fault subelement, soapenv:Fault
element, 366
dialog boxes
External Tools dialog box, 150-152
directory structure
for Chapter10 project, 270
for Chapter12 project, 313
for Chapter14 project, 386
dispose() method, deallocating cursor
resources with, 205
DOCTYPE declarations
types of DTD specifications in, 8
in XML documents, 8-9
document element, code example of, 6-7
document() function, obtaining a copy of an
XML document in another XML
document with, 130-131
Document interface methods, table of, 43
Document object
creating for the Chapter12 project, 318
obtaining for the XML document to be added
to the Xindice database, 239
parsing an XML document to obtain, 294
Document Object Model Level 3 Load and Save.
See also DOM Level 3 API
website address for information about, 4
document order, defined, 85
Document specialized node type, function
of, 35
document style, rules for the structure of
soapenv:Body, 380-381
document type definition (DTD). See DTD
(document type definition)
DocumentBuilder API. See JAXP's
DocumentBuilder API
DocumentBuilder class
implementation of the DOM parser by, 42
for mapping an XML document to a DOM
object, 269

427

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




428

INDEX

DocumentBuilder DOM parser, creating from
the DocumentBuilderFactory object,
72-73
DocumentBuilder object
creating, 42
parsing an XML document with for the
Chapterl2 project, 318
steps to instantiate, 42
using to parse the example XML document,
46-47
DocumentBuilderFactory, configuring for
schema validation, 72
DocumentBuilderFactory object
complete code sequence to instantiate, 42
creating, 42, 71-72
using to create an XML document, 302
documentInfo schema type, for example web
service in types.xsd, 376
doGet() method
invoking an HTTP servlet's on the server
side, 337
retrieving the value of the catalogld
parameter with, 340
DOM 3 Level specification, interfaces provided
by, 285
DOM API
comparing to the XPath API, 94-95
complete DOMValidator.java, 74-75
example, 46-48
parsing steps for parsing an XML
document, 41
DOM document model, outputting to a String
using the writeToString(Node)
method, 276
DOM implementation, code for retrieving and
parsing an XML document, 272
DOM Level 3 API
Core specification, 267
within JAXP 1.3 as DOM Level 3 Load and
Save corresponding API, 4
loading and saving with, 267-286
DOM Level 3 Load and Save specification
advantages over JAXP DocumentBuilder and
Transformer classes, 285
common reasons for filtering content, 267
features supported by, 269
interface for loading and saving an XML
document, 267
key features that motivated this
specification, 267
overview of, 268-269
website address for information about, 267
DOM node types, table of specialized for XML
documents, 34
DOM parser, creating from the
DocumentBuilderFactory object, 72-73
DOM parser AP], for performing validation as
part of the parsing process, 65
DOM parser factory, creating, 71-72
DOM parser validation application

code example for, 74-75
output from, 75
output with a validation error, 75
DOM parsing approach
notable aspects of, 35-36
XML documents, 33
DOM3Builder.java
for loading an XML document, 274-275
output from running in Eclipse, 275
DOMS3Filter.java
for filtering an XML document, 282-284
output in Eclipse from, 285
DOM3Writer.java, for outputting an XML
document, 277-278
DOMConfiguration object
obtaining for setting LSParser object
configuration parameters, 272-273
setting the error-handler parameter of, 273
setting the validation parameters on, 274-275
DOMErrorHandler interface, code for, 273
DOMErrorHandlerImpl class, creating an
instance of and setting the
error-handler parameter, 273
DOMImplementation, obtaining, 272
DOMImplementation object, casting to
DOMImplementationLS, 273-275
DOMImplementationLS object
creating an LSParser object from, 273-275
creating for saving an XML document,
275-276
DOMImplementationLS type object, creating
an LSParser instance from, 272
DOMImplementationRegistry, function of, 272
DOMImplementationRegistry object, for
creating a DOMImplementation
object, 273-275
DOMIMplementationRegistry object, creating
for saving an XML document, 275-276
DOMImplementationRegistry. PROPERTY,
setting for saving an XML document,
275-276
DOMParser.java, code for, 46-47
DOMSource object, creating, 124
DOMValidator.java, complete DOM API
example, 74-75
doPost() method, creating a database
Connection and adding a catalog entry,
341-343
download wsdl:operation, mapped to a Java
method, 395
DownloadZip message, code for, 377
DriverManager interface, creating a connection
to the MySQL database with, 252
Driver. RENDER_PDF, setting the renderer type
to, 322
DTD (document type definition), in XML
documents, 8-9
duplicates, removing from an XML
document, 127



E

Eclipse
configuring xindice as an external tool in,
223-225
running the XMLBeansMarshaller.java
application in, 200
what scomp external tools configuration
consists of, 190
xindice command configuration in, 223-225
Eclipse IDE
Chapter4 project XPath project Java build
in, 95
creating a Java project in, 19-22
importing a Java project into, 29-31
introduction to, 19-31
Eclipse project
Chapter4 project package structure, 96
creating and configuring for object binding
with JAXB 1.0, 147-149
creating and configuring for object binding
with JAXB 2.0, 169-170
creating for Chapter 10, 269-270
creating for Chapter 11, 290-291
creating for Chapter 8, 219-222
downloading for Chapter 8, 219
output from the DOM3Filter.java
application, 285
setting up, 68-71
setting up for Chapter14 project, 386-388
setting up for the Chapter12 project, 312-313
setting up for the Chapter13 project, 333-337
setting up for the Chapter4 project, 95-96
setting up for the Chapter7 project, 187-189
setting up for the Chapter9 project, 251-252
setting up to transform an example XML
document, 120-121
setting up using all three parsing
approaches, 39-48
ejb folder, in Chapter14 project, 387
element attribute, of wsdl:part for denoting a
schema element in the types
namespace, 376
element attributes and text, adding to a result
tree with the xsl:element element, 119
element declarations, defining in XML
Schema-based schema, 12
Element node type, Document specialized
node type as a specialized, 35
Element object, table of interface methods, 43
element text content, enclosing within a
CDATA construct, 7
elements
adding to the root element catalog, 206
as basic syntactic construct of an XML
document, 6-8
creating with a namespace prefix, 254
defining in an XML Schema-based
schema, 12
deleting, 241

INDEX 429

filtering in an XML document, 132-133
modifying using XML:DB API, 241
use of attributes in, 7-8
use of delimiter characters in, 6-8
using escaped numeric references in, 8
using text content in, 7
XUpdate configuration string for adding, 241
elements and attributes, creating, 133-134
email attribute, adding to a string built-in
type, 15
empty element, example of, 7
enableJavaNamingConvention attribute,
function of in the globalBindings
element, 162
encoding attribute, for an XML declaration, 6
endDocument() method, in the
CustomSAXHandler class, 51
entities, types of in XML documents, 9-10
entity declarations, 9-10
environment variables
adding to the Chapterl4 project, 389
setting in the external tools configuration for
scomp, 191-192
ErrorHandler class
creating a customized for the SAX parser, 77
for JAXP 1.3 Validation API, 81
ErrorHandler interface, code listing for
implementing, 42
ErrorHandler notification methods, table of
SAX 2.0, 37
error.jsp, page inputForm.jsp is forwarded to
when there is an error updating the
database, 347
ErrorListener, code for setting, 124
ErrorListener implementation class, code for,
123
escaped numeric references, use of in
elements, 8
evaluate(InputSource source) method,
function of, 98
evaluate(Object item, QName returnType)
method, function of, 98
evaluate(InputSource source, QName
returnType) method, function of, 98
evaluate(Object item) method, function of, 98
evaluate(String expression, Object item, Name
returnType) method, function of, 99
evaluate(String expression, InputSource
source) method, function of, 99
evaluate(String expression, Object item)
method
function of, 99
evaluate(String expression, InputSource
source, QName returnType) method,
function of, 99
evaluate() methods, table of XPath interface, 99
example table, creating in the MySQL
database, 332

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




430

INDEX

example use case
catalog.xsd catalog schema, 145-146
for JAXB 2.0, 169
objectives of, 146
example use case scenarios, 359-360. See also
use case scenarios
example XML document
for JAXB 2.0, 169
listing for catalog.xml, 39-40
Excel spreadsheet
converting an XML document to, 291-301
converting to an XML document, 301-309
converting to XML document, 289-309
using Excel viewer to open, 290
utility for converting XML to and vice versa,
289-309
Excel Viewer, website address for information
about, 290
Excel workbook
obtaining a spreadsheet from, 302
outputting to an .xls file, 295
ExcelToXML.java
for converting an Excel spreadsheet to an
XML document, 303-309
output from when run in Eclipse, 309
execQuery(queryExpression) method, function
of, 208
executeQuery(String) method, running to
return a ResultSet object, 340-341
executeQuery() method, using to obtain aresult
set, 257
extensible, defined, 363
Extensible Markup Language (XML). See]Java
and XML; XML 1.0; XML and Java
extension element, specifying a
complexContent extension with, 17
external bindings, function of, 160
external tools configuration
adding to the Favorites menu, 389
creating, 182
creating for xjc, 150-153
setting for scomp, 190-192
steps for creating for wsimport, 388-389
External Tools dialog box, creating an external
tool configuration for xjc in, 150-153
External Tools menu
adding the XJC configuration to, 151-152
adding the XMLBeans configuration to, 192

F

-f switch
specifying the variable corresponding to the
xupdate.xml configuration file, 233
for specifying the XML file to add to
collection, 227
faultcode fault subelement, soapenv:Fault
element, 366
faultfactor fault subelement, soapenv:Fault
element, 366

faultstring fault subelement, soapenv:Fault
element, 366
Favorites menu, adding the external tools
configuration to, 389
File object, code example of how to parse an
XML document from, 42
File->Import command, for importing projects
into your Eclipse workspace, 290
FileOutputStream object, creating to output the
Excel workbook to an .xsl file, 295
filtering, an XML document, 279-285
filter.xslt, code for filtering elements, 132
fixedAttributeAsConstantProperty attribute,
function of in the globalBindings
element, 162
FO namespace, XSL-FO document in, 313
folderInfo schema type, for example web
service in types.xsd, 376
following:: axis specification value, 90
following-sibling:: axis specification value, 90
FOP driver object
creating, 321-322
renderer types supported by, 322
form data validation, using Ajax for, 329
Form for Catalog Entry
creating a catalog entry in, 350
specifying the catalog ID field value in, 349
validating a catalog entry previously defined
in, 351
validating the input field catalog ID in, 349
FormServlet.java, complete code for, 341-343
free() method, using to free SQLXML object
resources, 256

G

Garrett, Jesse James, Asynchronous JavaScript
and XML (AJAX) coined by, 329

gen_source folder

adding to the source path in the Chapter 7
Java build path area, 188-189
generating Java content classes in, 170

generateExcel(File) method, that generates an
Excel spreadsheet from an XML
document, 295-300

generatelsSetMethod, code using, 163

generatelsSetMethod attribute, function of in
the globalBindings element, 162

generatePDF() method, used by FOP drive to
convert an XML document to a PDF
document, 323-324

get AttributeNamespace() method, using to
obtain the attribute namespace, 259

getAllResponseHeaders() method,
XMLHttpRequest, 331

getArticle() method, for obtaining a List of
ArticleType objects, 178

getAttribute(String) method, function of, 43

getAttributeCount() method, using to obtain
the attribute count in an element, 259



getAttributeLocalName() method, using to
obtain the attribute local name, 259
getAttributeLocalName(i) method, for
returning the local name of an
attribute, 58
getAttributeNamespace(i) method, for
returning the attribute namespace for a
specified attribute index, 58
getAttributeNode(String) method, function
of, 43
getAttributePrefix() method
for returning the attribute prefix for a
specified attribute index, 58
using to obtain the attribute prefix, 259
getAttributes() method
function of, 43
in Node interface, 44
for returning a NamedNodeMap of
attributes, 44
getAttributesCount() method, for returning the
number of attributes in an element, 58
getAttributeValue(i) method, for returning the
attribute value, 58
getAttributeValue() method, using to obtain the
attribute value, 259
getBinaryStream() method, creating an
InputStream object from the SQLXML
object with, 258
getCatalog() method, obtaining a Catalog
object from a CatalogDocument object
with, 200
getChildNodes() method
in Node interface, 44
for retrieving the root element subnodes,
44-45
getConnection() method, for creating a
connection to the MySQL
database, 252
getContent() method, outputting the XML
document in the XML resource using,
239-240
getDoctype() method, function of, 43
getDocumentElement() method
function of, 43
for retrieving the root element, 44
getElementByld(String) method, function of, 43
getElementsByTagName(String) method
function of, 43
obtaining a node list from the Document
object with, 294
using to obtain the value of the <valid>
element, 343
getEncoding() method, for returning the
encoding in the XML document, 57
getEventType() method, for returning an
XMLEventReader object event type, 62
getJournal() method
of the CatalogType value object, 178
obtaining a List of Journal objects for a
Catalog object with, 158

INDEX

getJournalArray() method, for retrievingjournal
elements in the catalog element,
200-201
getLastRowNum() method, for obtaining the
number of rows in a spreadsheet, 302
getLocalName() method
in Node interface, 44
obtaining the local name with, 259
for returning the local name of an
element, 58
getName() method
function of, 43
for returning the attribute name, 44
getNamespaceURI() method
obtaining the namespace with, 259
START_ELEMENT event type namespace
returned by, 58
getNodeLength() method
for returning the attribute list length, 44
for returning the node list length, 45
getNodeName() method, in Node interface, 44
getNodeType() method
in Node interface, 44
for obtaining the node type, 45
getNodeValue() method, in Node interface, 44
getPrefix() method
obtaining the prefix with, 259
START_ELEMENT event type element prefix
returned by, 58
getProjectPortTypelmplPort() method,
invoking to get an instance of the
ProjectPortType service interface,
407-408
GetProjects abstract message, parts of, 376
getPublisher() method
accessing publisher attribute with, 178
retrieving the attribute publisher with, 201
using, 158
getQName() Attributes interface method, in the
CustomSAXHandler class, 51
getResponseHeader (string header),
XMLHttpRequest, 331
getSection() method
accessing section attribute with, 178
using, 158
getService() method, using to update an
element, 241
getSQLXML(int index) method, getting the
SQMXML object for the Catalog
column from the ResultSet with, 258
getSQLXML(String columnName) method
getting the SQMXML object for the Catalog
column from the ResultSet with, 258
retrieving an SQLXML object with, 252
getSQLXML(int index) method, retrieving an
SQLXML object with, 252
getTagName() method
function of, 43
for obtaining the root element name, 44

431

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




432

INDEX

getText() method
obtaining the text of the parse event with,
259
for retrieving the text of a CHARACTERS
event, 59
getTextValue() method, retrieving the value of
the title element with, 205
getTypelnfo() method, for retrieving data types
supported by a database from
metadata, 252
getValue() method
in the CustomSAXHandler class, 51
function of, 43
for returning the attribute value, 44
getVersion() method, for returning the XML
document version, 57
getWhatToShow() method
of the LSPParserFilter interface, 280
table of return values for, 281
getXMLStreamWriter() method, obtaining an
XMLStreamWriter object with, 254
global binding declarations, 160
function of, 162
globalBindings element
specifying global declarations in the root
element with, 162
using to override the default Java
representation, 168
GRANT statement, for adding a new user to the
user table, 332

H

handler chain, customizing for a logging
handler, 391

hasChildNodes() method, for testing if an
element has subnodes, 44-45

hasNext() method

for determining if parsing events are
available, 258
use of in StAX cursor API, 37
use of in StAX iterator API, 38
header blocks, defined, 364
header row
adding to a spreadsheet, 293
code for adding to a spreadsheet, 293

Heilmann, Christian, Beginning JavaScript with
DOM Scripting and Ajax (Apress, 2006)
by, 329

HSSECell class

for representing a cell in a spreadsheet, 292
using to set the cell style, 289-290

HSSFFont class, defining a spreadsheet font
with, 293

HSSFRow class, using to set the row height,
289-290

HSSFSheet class, representing the spreadsheet
using, 289-290

HSSFWorkbook class, a workbook for setting
spreadsheet font, sheet order and cell
styles, 289-290

HTML, converting an XML document to,
128-130

HTML transformation, output in Eclipse
from, 130

htmlTransform.xslt, for generating an HTML
file, 129

HTTP client functionality, XMLHttpRequest
object properties for implementing, 330

HTTP POST method, invoking in the
FormServlet servlet, 341-343

HttpServletResponse, setting the content type
to text/xml in the Ajax application, 341

|
IBM DB2 XML Extender, database tool for
storing XML, 249
identity constraints, added to JAXB 2.0, 164
identity transformation, applying to modify
encoding or DOCTYPE or adding
indentation, 126-127
identityTransform.xslt, code for, 126-127
IE 5. See Internet Explorer (IE) 5
IE 6. See Internet Explorer (IE) 6
IE 7. See Internet Explorer (IE) 7
Import dialog box, for importing a Java
project, 30
IncomeStatements.xls, Excel spreadsheet
generated with XMLToExcel.java
application, 300-301
incomestatements.xml, code example, 289-290
indentation, specifying the
xalan-indent-amount attribute to add
indentation, 134
init target, for creating the directories for the
Ajax application, 334
inline bindings, function of, 160
input, procedure to filter, 279
input field catalog ID, validating, 349
InputFilter class
code for, 281
inputForm.jsp page
code for, 344-347
web page returned by, 348
InputSource object
creating, 98
creating and using to evaluate an XPath
expression, 101
for evaluating an XPath expression, 98
InputStream object, obtaining a workbook from
and obtaining a spreadsheet from the
workbook, 302
insertAttributeWithValue(String, String)
method, adding a new attribute to an
element with, 206
insertRow() method, invoking to add a new row
to a ResultSet, 257



installing
Apache FOP, 311
J2SE 5.0 for running JAXB 1.0 examples, 147
J2SE 6.0 beta software, 250-251
Java Web Service Developer Pack JWSDP), 147
instance, of a schema document, 11
Institute of Electrical and Electronics Engineers
(IEEE), website address for, 88
internal DTD, example of for an XML
document, 9
Internet Explorer (IE) 5, ActiveXObject API
introduced within by Microsoft, 330
Internet Explorer (IE) 6, creating an instance of
XMLHttpRequest object in, 330
Internet Explorer (IE) 7, creating an instance of
XMLHttpRequest object in, 330
isXXX() method, function of, 62
iterator API. See StAX iterator API, 62

J

J2EE 1.4, application servers that support, 331
J2EE 1.4 SDK, downloading and installing to
compile the example application, 332
J2SE, packages, and classes, 40-41
J2SE 5.0
downloading and installing for running
JAXB 2.0 examples, 169
downloading and installing to compile the
example application, 332
JAXP1.31in,3
website address for information about, 120
J2SE 5.0 annotations, reliance of JAXB 2.0 on to
support bidirectional mapping, 164
J2SE 5.0 JRE, setting the Chapter6-JAXB2.0 JRE
to, 169
J2SE 5.0 software development kit (SDK),
website address for downloading, 40
J2SE 5.0 XPath, interfaces to evaluate XPath
expressions, 96-97
J2SE 6.0, StAX API implementation included
in, 38
J2SE 6.0 beta software
installing, 250-251
website address for information about, 250
Jakarta POI HSSF API, overview of, 289-290
JAR files
needed for developing an XML to PDF
conversion application, 311
required for a DOM 3 Load and Save
application, 269
Java, selected XML-related utility APIs, 4
Java 2 Enterprise Edition (J2EE), Java XML
Architecture for XML Binding (JAXB)
in, 3
Java and XML, introduction to, 3-31
Java API for XML Processing, website address
for information about, 65

INDEX

Java API for XML Web Services (JAX-WS 2.0), in
J2EE 5.0 as WSDL corresponding Java
API, 4
Java APIs, and W3C Recommendations covered
in book, 3-4
Java application
creating a new configuration for, 27-28
running, 26-29
Java bindings package name, code for
customizing, 390
Java build path
adding xmltypes.jar to, 194
adding xmltypes.jar to the in the Chapter?
project, 194
for Chapter10 project, 270
for Chapter12 project, 312
for Chapter13 project, 335-336
for Chapter14 project, 387-388
Chapter6 Eclipse project for JAXB 2.0,
169-170
for Chapter7 project, 188
for Chapter8 project, 220
for Chapter9 project, 251
setting for your Java project, 23
and source path for JABX 1.0, 387-388
Java classes
binding catalog schema to, 149-153, 171-174
binding to XML Schema, 180-183
creating, 24-26
generated in the xmlbeans package, 197
Java Community Process
JAXB API developed as part of, 140
website address for information about, 140
Java content classes
schema-derived generated by xjc, 171
using to marshal and unmarshal the
catalog.xml document, 149-153
Java Database Connectivity JDBC) 4.0 API,
utility for storing XML content in a
relational database, 4
Java EE 5 SDK
downloading and installing, 386
steps to use for building the web service, 385
website address for downloading, 385
Java Enterprise Edition (EE)
Java Enterprise Edition (EE), 3
website address for, 354
Java method name, customizing for download
wsdl:operation, 391
Java object tree
conversion of to an XML document, 154
creating an XML document from, 153-157
creating for marshaling into an XML
document, 154, 174
creating from an XML document
(unmarshaling), 157-160, 177-180
Java Platform Standard Edition (J2SE), Java APIs
as part of, 3

433

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




434

INDEX

Java project
creating, 19-22
importing, 29-31
setting the build path for, 23
Java representation
using globalBindings element to override the
default, 168
XML Schema binding to, 141-144, 165-169
Java servlet, website address for information
about, 334
Java Settings screen, adding the required
project libraries under the Libraries
tab, 21-22
Java type names, adding prefixes or suffixes to,
196-197
Java value object, for the complex type
articleType, 175
Java Web Service Developer Pack JWSDP),
downloading and installing for running
JAXB 2.0 examples, 169
Java Web Service Developer Pack 1.6 JWSDP
1.6)), installing for running JAXB 1.0
examples, 147
Java XML Architecture for XML Binding JAXB),
in Java 2 Enterprise Edition (J2EE), 3
JAVA_HOME environment variable, setting for
the XINDICE external tools
configuration, 224-225
JavaBeans, XMLBeans 2.0 API utility for binding
to, 4
javax.xml.parsers package, XML
document-parsing APl in, 41
javax.xml.stream package, StAX API classes
in, 57
javax.xml.stream.events package, StAX API
classes in, 57
javax.xml.transform package, basic classes
in, 121
javax.xml.validation.Validator class,
creating, 80
javax.xml.xpath.XpathConstants. BOOLEAN,
function of, 98
javax.xml.xpath.XpathConstants.NODE,
function of, 98
javax.xml.xpath.XpathConstants. NODESET,
function of, 98
javax.xml.xpath.XpathConstants. NUMBER,
function of, 98
javax.xml.xpath.XpathConstants.STRING,
function of, 98
JAXB vs. XMLBeans, 186
JAXB 1.0
architecture of, 140-141
how it differs from JAXB 2.0, 163-183
JAXB 2.0 advantages over, 183
XML Schema attributes and components not
supported by, 141

JAXB 1.0 binding, compactness of versus
JAXB 2.0 binding, 166
JAXB 1.0 examples, downloading and installing
the software for running, 147
JAXB 2.0
advantages over JAXB 1.0, 183
architecture of compared to JABX 1.0,
163-164
external binding declaration for a package
name, 166
how it differs from JAXB 1.0, 163-183
schema attributes supported by, 164
schema support added to since JABX 1.0, 164
JAXB 2.0 binding, compactness of versus JAXB
1.0 binding, 166
JAXB 2.0 binding annotations, table of
commonly used, 165
JAXB 2.0 bindings, customizing, 392-393
JAXB 2.0 examples, downloading and installing
software for running, 169
JAXB API
developed as part of Java Community
Process, 140
key to understanding, 139-140
versions available, 140
JAXB binding compiler. Seexjc
JAXB bindings, customizing, 160-162
JAXB customization bindings, choices for
defining, 160
JAXB namespace declaration, specifying with or
without a prefix, 162
JAXBContent object, creating a Marshaller
object with, 154
JAXBContext class, creating a new instance
of, 174
JAXBElement object
creating to marshal CatalogType to an XML
document, 175-177
JAXBMarshaller.java
code for, 176-177
code for marshaling example XML
document from a Java object tree,
155-156
code showing output from, 157
JAXBUnMarshaller.java
code for, 159
complete program for, 179-180
JAXP 1.3,inJ2SE 5.0, 3
JAXP 1.3 AP], rules applied for loading
DocumentBuilderFactory
implementation class, 72
JAXP 1.3 DOM parser API
basic steps for schema validation using, 71
using for schema validation as part of the
parsing process, 65
JAXP 1.3 SAX parser API, using for schema
validation, 76-80
JAXP 1.3 transformation APIs. See TrAX APIs



JAXP 1.3 Validation API
criteria for selecting the appropriate, 66
for decoupling validation from parsing, 65
ErrorHandler class, 81
steps to use this API, 80
JAXP 1.3 Validator, complete example, 81-83
JAXP 1.3 XPath API
for evaluating XPath expressions, 96-105
example application, 102-105
JAXP DocumentBuilder class. See
DocumentBuilder class
JAXP parsers, configuring for schema
validation, 66-68
JAXP pluggability, for SAXParserFactory
implementation classes, 49
JAXP's DocumentBuilder API, comparing with
JAXP's Transformer API, 269
JAXP's Transformer API, comparing with JAXP's
DocumentBuilder API, 269
JAX-WS 2.0, website address for information
about, 354
JAX-WS 2.0 API
using to build the example web service,
385-415
using to implement the provider agent and
the requestor agent, 355
JAX-WS 2.0 specification, website address for
downloading, 390
JBoss 4.0.2
configuring with the MySQL database,
332-333
downloading and installing, 331-332
JBoss application server
configuring with the MySQL database,
332-333
configuring Xindice software with, 219
starting, 347
website address for downloading, 219
JDBC driver
code for loading, 252
website address for information about the
technology, 332
JDBC-supported relational databases, use of for
building web applications, 332
JDK 5.0
needed for Chapter 11 Eclipse project, 290
needed for developing an XML to PDF
conversion application, 311
website address for information about, 85
JDOM, website address for information
about, 85
JDOM open source project, website address
for, 5
JDOM XPath API, function of, 105-109
JDOM XPath class methods, table of, 106
JDOM XPath example application, 108-109
JDomXPath.java, output from running in the
Eclipse IDE, 108-109

INDEX

journal element
adding an article element to, 155, 175
adding and setting the attribute
publisher, 198
adding to the catalog element, 154, 175
deleting and modifying, 234-235
moving the cursor to the start of, 206
Journal interface, obtaining a list of Article
objects with the getArticle() method
of, 158
journal node, code for outputting, 276
journal objects
getting an Article object array from, 201
retrieving for a Catalog object, 158, 178
JournalType.java class, generated for the
complex type journalType, 173
JRE system library, setting to JRE 5.0,
290-291, 335
jsp directory, in Chapter14 project, 387
JSR-173. See StAX API
JSR-224, website address for, 385
JWSDP 1.6. See alsoJava Web Service Developer
Pack 1.6 JWSDP 1.6)
website address for, 147

L

language constructs. See WSDL 1.1 language
constructs
level attribute
setting for an article element, 155, 175
XQuery expression to select, 208
list construct, for specifying a simpleType
construct as a list of values, 17-18
List<JournalType> object, code for
obtaining, 178
Load AP], introduction to and key points of, 268
loadDocument() method, using to load an XML
document, 273-275
location path construct
step components, 88-89
syntax associated with, 88-93
login-config.xml, code for, 333
loosely coupled, defined, 353
LSInput interface, function of, 268
LSInput object
creating, 280
parsing the example XML document
from, 279
setting a data source on, 268
LSInput.byteStream, input data source, 268
LSInput.characterStream, input data
source, 268
LSInput.publicID, input data source, 268
LSInput.stringData, input data source, 268
LSInput.systemID, input data source, 268
LSOutput interface, representing output for
serializing a DOM document
model, 268

435

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




436

INDEX

LSOutput object
creating for outputting an XML
document, 276
creating for saving an XML document,
275-276
setting an OutputStream for to output a
filtered XML document, 282
LSOutput.byteStream, 268
LSOutput.characterStream, 268
LSOutput.systemlID, 268
LSParser implementation, creating from the
DOMImplementationLS object, 279
LSParser interface, for loading and parsing an
XML document and obtaining a
Document object, 270
LSParser object
adding error handling to, 273
function of, 268
obtaining a DOMConfiguration object and
setting the error-handler parameter
on, 274-275
order for selecting input sources, 268
setting filtering on, 281
setting the configuration parameters of,
272-273
using to parse an XML document, 273
LSParserFilter interface
acceptNode() method of, 280
for filtering nodes as data is parsed, 268
getWhatToShow() method of, 280
input filtering allowed by, 279
startElement() method of, 280
LSResourceResolver interface, for resolving
external resources, 268
LSSerializer interface
for serializing a DOM document model to an
XML document model, 268
using to save a DOM document mode to an
XML document model, 275
LSSerializer object
creating for saving an XML document,
275-276
for scanning different outputs to determine
which to output to, 268
setting filtering on, 282
LSSerializerFilter interface
filters nodes as a DOM document model is
saved, 268
output filter class required to implement,
281-282
output filtering allowed by, 279

M
manifest element, for example web service in
types.xsd, 376
manifest file, in use case scenario, 359-360
markup declaration syntax, website address for
information about, 65

marshaling
catalog.xml from Java classes generated with
XMLBeans, 197-200
an XML document, 153-157, 174-177
Marshaller class, for converting a Java object
tree to an XML document, 154, 174
maxOccurs attribute, specifying cardinality of a
construct with, 14
merging XML documents, 130-131
message exchange patterns, in
message-oriented model, 357
MessageHandler class, configuring to output to
afile, 321-322
message-oriented model
example of, 357
key points about, 356
message exchange patterns, 357
request-response messaging with
intermediate agent nodes, 358
web services architecture, 356-358
META-INF/application.xml file, included in the
project.ear, 402
MIME constructs namespace, for example
WSDL 1.1 document, 373
MIME content, customizing, 390-391
minOccurs attribute, specifying cardinality of a
construct with, 14
model group binding
alternative binding style, 143-144
external binding declaration with, 168
pros and cons of, 144
Moodie, Matthew, Pro Apache Ant (Apress,
2005) by, 333
Mustang, website address for downloading the
snapshot release of, 40
MustUnderstand fault code, Soap 1.1, 367
MySQL 5.0, downloading and installing, 251
MySQL 5.0 database, website address for
information about, 332
MySQL Connector/] driver, website address for
information about, 251
MySQL database
configuring JBoss with, 332-333
connection URL for, 252
data types output for, 253
website address for information about, 251
MySQL database user, creating after installing
the MySQL database, 332-333
MySQL data source, configuring the JBoss
application server to use, 332
mysql-ds.xml file, code showing the fully
configured, 333

-n switch
for specifying the XML catalog.xml as
document to be deleted, 235
for specifying the XML filename in the
collection, 227, 228, 233



name-based node, with a namespace prefix, 92
named model groups, defining all model
groups within, 14
NamedNodeMap, representing an unordered
set of nodes, 41
namespace, method for returning, 58
namespace declarations, for example WSDL 1.1
document, 372-373
namespace nodes
adding a namespace to navigate, 106
evaluating, 100-101
namespace prefix, creating an element
with, 254
namespace:: axis specification value, 91
NamespaceContextImpl.java class, code for,
100-101
native XML databases. See also Xindice native
XML databases
key points about why you need, 216
table of other commonly used, 216
New Java Class screen, specifying class name,
class modifiers and interfaces
implemented in, 24-25
New Java Package dialog box, specifying a
package name in, 24
New Project dialog box, creating a new Java
project in, 19-20
newCursor() method
for creating an XML cursor, 208
using to create an XML cursor, 204
newDocumentBuilder() static method, for
creating a DocumentBuilder object, 42
newlnstance() method
creating a DOMImplementationRegistry, 272
for creating an LSSerializer object, 276
creating a SAXParserFactory object with, 76
instantiating the TransformerFactory class
with, 122
newlnstance() static method, for creating the
DocumentBuilderFactory method, 42
newTransformer(Source xsltSource) method,
obtaining a Transformer object from a
TransformerFactory object with, 122
next() method
generating a parsing event with, 57
obtaining the next parse event with, 258
table of return values, 258-259
use of in StAX cursor API, 37
nextEvent() method
for obtaining the next event of an
XMLEventReader object, 62
use of in StAX iterator API, 38
node(), function of as node test, 91
Node interface, methods in specialized, 44
Node interface methods, table of, 44
node name test, with no namespace prefix, 91-92
Node objects, code for casting to Element, 45
node test, function of in location path
construct, 89

INDEX

node types. See also DOM node types
specialized for representing an XML
document and child Node types, 34
table of, 45
node type tests, list of, 91
node values, obtaining with XPath, 131-132
NodelList interface, representing an ordered list
of nodes, 41
nodes, copying, 133
NodeSet, retrieving, 99
node-set datatype, 88
noNamespace package, using interfaces from
for marshaling and unmarshaling an
XML document, 193-194
notation XML Schema components, added to
JAXB 2.0, 164
number datatype, 88
-nv xjc command option, description of, 149

0
object binding, 137-212
with JAXB, 139-183
overview, 139-140
simple example revisited, 166-169
ObjectFactory object
code for creating, 154
for creating instances of relevant generated
Java content classes, 154
ObjectFactory.java, code for, 173-174
onreadystatechange property
event handler for the change event, 340
provided by XMLHttpRequest object, 330
using to register a callback event handler
with the XMLHttpRequest object, 339
open(string method, string url, boolean asynch,
string username, string password)
method, XMLHttpRequest, 331
Oracle XML SQL Utility, database tool for
storing XML, 249
ordered list of elements, defining in an XML
Schema, 13
org.jdom.xpath.XPath class, function of,
105-109
org.w3c.dom package, classes and interfaces
representing the DOM structure in, 41
org.xml.sax package, for accessing the
SAXException and SAXParseException
classes, 41
output, procedure to filter, 279
output escaping, disabling for a carriage
return, 127
output filtering, creating an output filter for,
281-282
OutputKeys class
in javax.xml.transform package, 121
specifying the Transformer output
properties string constants in, 122-123
string constants specified in, 123

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




438

INDEX

P
-p <pkg> xjc command option, for specifying
the target package, 149
Package Explorer
viewing the Java class in, 26
viewing the newly created Java project in, 22
parameter vs. variable, 118
parent:: axis specification value, 90
parent::node(), abbreviation for, 91
parse(File) method, parsing an XML document
with, 200
parse(String uri) method, for validating an XML
document using a parser, 73
parse(File, DefaultHandler) method, validating
the SAX parser with, 78
parsed entities. See entities
parseMethod attribute, function of in datatype
binding declarations, 163
parsers
configuring for validation, 73
setting properties for SAX, 77
using to validate an XML document, 73
parseURI() method, for parsing the XML
document DOM3Builder.java, 274-275
parsing
with the DOM Level 3 API, 41-48
overview of approaches, 34-39
setting the mode of, 272
XML documents, 33-63
parsing approaches, comparison table, 39
parsing XML documents, objectives of, 33
Part 14: SQL/XML (XML-Related
Specifications), added by the SQL:2003
international standard, 249
PDF document
converting an XML document to, 311-325
generating, 321-325
procedure for generating from an XSL-FO
document, 321
port type, function of wsdl:portType element,
378-379
port type binding, 382-384
Portable Document Format (PDF), Apache FOP
API for transforming XML content
into, 4
preceding:: axis specification value, 90
preceding-sibling:: axis specification value, 90
predicates
function of in location path construct, 89
keys to understanding, 92-93
prefix, method for returning, 58
prefix:* name, meaning of in a node name
test, 92
PreparedStatement object, creating to store an
SQLXML object in a database, 256
printMethod attribute, function of in datatype
binding declarations, 163
private external DTD, example of for an XML
document, 9

Pro Ajax with Java Frameworks, by Nathaniel T.
Schutta and Ryan Asleson (Apress,
2006), 329
Pro Apache Ant, by Matthew Moodie (Apress,
2005), 333
Pro XML Development with Java, overview of
book contents, 5
processing-instruction(), function of as node
test, 91
processResponse() function, obtaining the
value of the responseXML property
in, 343
project element, for example web service in
types.xsd, 376
Project Layout section, in Create a Java Project
screen, 20-21
ProjectClient application, running, 413
ProjectClient client, running in Eclipse, 412-415
ProjectClient.java
code for web service client, 408-412
output from running, 413-415
project.ear application
deploying, 402-403
running the verifier on the application and
precompiling the JSPs, 403-404
projectejb.jar, contents of, 400-401
projectInfo schema type
containing information about a project, 375
ProjectLocal EJB, use of by
ProjectPortTypelmpl class in
ProjectLocal.java, 399
ProjectLocal EJB interface, implementation of
by ProjectService class, 399-400
ProjectPortType
SOAP 1.1/HTTP binding for, 382-384
wsdl:operation defined for the use case
scenarios, 378
ProjectPortType SEI
implementing, 397-400
table of Java annotation tags used in
ProjectPortType.java, 394
ProjectPortTypelmpl.java
code for, 407-408
SEI implementation in, 397-399
ProjectPortTypelmplService service, mapping
of defs:ProjectSoapBinding port type
binding to ProjectPortTypelmplPort
port within, 385
ProjectPortType.java, generated code in,
395-397
projects schema element, for example web
service in types.xsd, 376
projectsDetail schema element, for example
web service in types.xsd, 376
ProjectService class, implementation of
ProjectLocal EJB interface by, 399-400
projectservice.war, contents of, 401
ProjectSoapBinding, SOAP 1.1/HTTP binding
for defs:ProjectPortType named, 379



properties
setting for SAX parser, 50
setting schema validation, 66-67
property binding declarations, 160
function of, 163
provider agent, as a concrete software
implementation of the web services
SEI, 355
provider entity, function of, 355
providers and requestors, 355
public external DTD, example of for an XML
document, 9
Public Review Draft (JSR-000221), proposed
support for the SQL:2003 standard, 250
publisher attributes, setting for the root
element in the XML document, 175
pull parsing approach
function of, 37-38
XML documents, 33
push parsing approach
function of, 36-37
XML documents, 33

R

rd action, use of in xindice to specify an XML
document to be retrieved, 228
readyState property, provided by
XMLHttpRequest object, 330
redefine declaration, added to JAXB 2.0
for redefined XML Schema
components, 164
registering, a new user with the web service, 406
relational databases
overview for storing XML in, 249-250
storing XML content in, 249-264
relational XML databases vs. Xindice native
XML databases, 215
relay attribute, introduced in SOAP 1.2, 368
remote procedure call (rpc) style, embodying
the semantics associated with remote
procedure invocations, 380
remove element, for example web service in
types.xsd, 376
renderer types, supported by the FOP driver
object, 322
request message. See SOAP 1.1 request message
requestor agent, function of, 355
requestor entity, function of, 355
resource-oriented model, essential aspects
of, 359
response message. See SOAP 1.1 response
message
responseText property, provided by
XMLHttpRequest object, 330
responseXML property, provided by
XMLHttpRequest object, 330
restriction element
specifying a complexContent restriction
with, 17
specifying a simpleContent restriction
with, 16

INDEX

Result class, in javax.xml.transform
package, 121
Result Set DTD, database tool for storing
XML, 249
result tree, example from transforming a
catalog document into an HTML
document, 113
resultCursor
code for obtaining, 208
code for outputting the XML fragment
for, 208
ResultSet object
obtaining in the Ajax application, 341
obtaining the SQLXML object for the Catalog
column from, 258
retrieving, 257
retrieving an SQLXML object from, 252
retrieveXMLDocument() method, in the
XMLToSQL.java application, 260-264
return types. See XPath return types
return values, table of for the next() method,
258-259
root element, example containing a nested
element, 7
rows, adding to a ResultSet, 257
run() method, generating a PDF document
from the XSL-FO document with, 322
runtime-binding framework API, function of in
JAXB API, 140-141

S
SAAJ. See SOAP with Attachments API for Java
(SAA)) 1.3
Save API, introduction to and key points of, 268
saveDocument() method, use of in the
DOM3Writer.java application, 276-278
SAX 1.0 API vs. SAX 2.0 API, 48
SAX 2.0 API
ContentHandler interface defined by, 36
key points pertaining to the use of, 48-49
parsing with, 48-57
for the push approach available as, 36
vs. SAX 1.0 APT, 48
table of ContentHandler event methods, 36
table of ErrorHandler notification
methods, 37
SAX API
example, 53-57
how it differs from the StAX API, 37
SAX API validator, complete example code for,
78-80
SAX handlers, function of, 51-52
SAX parser object
code for creating, 53
configuring for validation, 77
creating, 77
obtaining, 49
SAX parser properties, table of commonly
used, 50
SAX parsing, steps for, 52

439

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




440

INDEX

SAXBuilder, creating and parsing catalog.xml
with, 106
Saxon, website address for information
about, 111
Saxon 8.1.1 XSLT, website address for
downloading, 187
SAXParser classes
needed with SAXParserFactory to use SAX
parsing, 76
using to parse an XML document, 49
SAXParserApp.java
code for, 53-54
output from, 55-56
SAXParserFactory
configuring for validation, 76-77
features of, 49-50
needed for SAX parsing, 76
setting validation features for, 77
table of features, 50
SAXParserFactory implementation classes
JAXP pluggability for, 49
lookup procedure for obtaining by JAXP, 49
SAXParserFactory object, creating using
newlnstance() static method, 76
SAXValidator.java, code example of complete,
78-80
schema binding declarations, 160
specifying in the root element, 162
schema construct, defining an element
within, 12
schema data types, defining into a separate file
for web service, 373-376
schema declarations, example schema
document with its root element, 12
schema definitions, for example WSDL 1.1
document, 373-376
schema definition source, specifying, 67
schema document, example of with its root
element, 12
schema example document, complete code
listing for, 18-19
schema import, for example WSDL 1.1
document, 376
schema language, specifying, 67
schema types, defining for example WSDL 1.1
document, 373
schema validation
basic steps for using JAXP 1.3 SAX parser
API, 76
configuring JAXP parsers for, 6668
introduction to, 65-83
setting LSParser object for, 273
setting properties, 66-67
schemaBinding element, specifying schema
binding declarations in the root
element with, 162
SCHEMAGEN configuration, example of, 182
schemagen tool, creating an external tool
configuration for, 182-183

schemal.ocation attribute, value pairs
allowed, 67
[schema.xsd]*, scomp command, 190
Schutta, Nathaniel T. and Ryan Asleson, Pro
Ajax with Java Frameworks (Apress,
2006) by, 329
scomp binding compiler
configuring to generate Java content
classes, 188
Java interface and implementation classes
generated by, 195-196
running on the example schema in
Chapter 7, 192-193
steps for configuring as an external tool in
Eclipse, 190-192
syntax for, 190
table of options, 190
scomp command, invoking the XMLBeans
binding compiler through, 186-187
scomp compiler options, table of, 190
section attributes, setting for the root element
in the XML document, 175
SEI. See service endpoint interface (SEI)
selectNodes(java.lang.Object context,
java.lang.String xPathExpression)
method, function of, 106
selectNodes(java.lang.Object context) method,
function of, 106
selectNodes() method, selecting element nodes
with, 107
selectSingleNode(java.lang.Object context)
method, function of, 106
selectSingleNode(java.lang.Object context,
java.lang.String xPathExpression)
method, function of, 106
selectSingleNode() method, selecting an
element node with, 107
selectWithXQuery() method, using, 208
self:: axis specification value, 90
self:: node()
abbreviation for, 91
axis and node test combination, 91
send() method, sending an HTTP request in the
Ajax application with, 339
send(data) method, XMLHttpRequest, 331
sequence model groups, function of, 13
serializing and deserializing, XML documents
using DOM Level 3 Load and Save
specification, 267
Server fault code, Soap 1.1, 367
service description, 356
service endpoint interface (SEI), part of web
service endpoint, 355
service port, function of, 385
service semantics, function of, 356
service-oriented model, aspects of, 358
services.wsdl, WSDL 1.1 to Java mapping for,
389-397



services.wsdl WSDL 1.1 document, generating
the SEIJ, the service, and the JAXB 2.0
object bindings for, 388
setAlignment(short) method, for horizontally
aligning spreadsheet cell text, 293
setBottomBorderColor(short color) method, for
setting the bottom border color of
spreadsheet cells, 293
setCellStyle(cellStyle) method, for setting the
cell style, 295
setCellValue(String) method
for setting cell value in a spreadsheet, 293
setting the cell value in a spreadsheet
with, 294
setColumnBreak(short column) method, for
setting a page break at a specified
column, 295
setColumnWidth(short column, short width)
method, for setting the column width
in a spreadsheet, 293
setDefaultColumnWidth(short width) method,
for setting the default column
width, 295
setDefaultRowHeight(short height) method, for
setting the default row height, 295
setErrorHandler() method, using, 81
setErrorListener(ErrorListener) method, for
registering an error handler with a
Transformer object, 123-124
setFeature(String, boolean) method, for setting
features of a SAXParserFactory, 49-50
setFillBackgroundColor(short bg) method, for
setting the background color of
spreadsheet cells, 293
setFillForegroundColor(short fg) method, for
setting the foreground color of
spreadsheet cells, 293
setFitToPage(boolean b) method, for setting to
fit to the page, 295
setHorizontallyCenter(boolean value) method,
for setting the output to be horizontally
centered, 295
setIndentation(short indent) method, for
setting text indentation in a
spreadsheet cell, 293
setInputSource(InputSource) method, for
setting the XSL-FO document as
input, 322
setlnputSource(OutputSource) method, for
setting the XSL-FO document as
output for the PDF document, 322
setLeftBorderColor(short color) method, for
setting the left border color of
spreadsheet cells, 293
setMargin(short margin,double size) method,
for setting the style sheet margin, 295
setNamespaceAware() method, function of, 76

INDEX

setOutputProperty(String name, String value)
method, for setting the output
properties on a Transformer
object, 122

setProperty(String, Object) method, setting SAX
parser properties with, 50

setRequestHeader(string headerName, string
headerValue) method,
XMLHttpRequest, 331

setRightBorderColor(short color) method, for
setting the right border color of
spreadsheet cells, 293

setRotation(short rotation) method, for setting
text rotation of cell text, 293

setRowBreak(int row) method, for setting a
page break at a specified row, 295

setSchema(Schema schema) method, for
setting the schema to be used for
validation during unmarshaling, 178

setScreenLogger(Logger) method, for setting
the screen logger of the
MessageHandler class, 321-322

setSQLXML(int index, SQLXML value) method,
setting the SQLXML value with, 256

setSQLXML(int index, SQLXML sqlXML)
method, storing an SQLXML objectin a
database table with, 252

setSQLXML(String columnName, SQLXML
sqIXML) method) method, storing an
SQLXML object in a database table
with, 252

setString(String) method, for adding data to an
SQLXML object, 252

setter methods

provided by the Catalog interface for
setting the section and publisher
attributes, 154
for setting the border color of spreadsheet

cells, 293

setTopBorderColor(short color) method, for
setting the top border color of
spreadsheet cells, 293

setValidating() method, function of, 76

setValidating(boolean) method, for validating
an XML document that is being
unmarshaled, 157

setVerticalAlignment(short align) method, for
setting vertical alignment of
spreadsheet cells, 293

setWrapText(boolean wrapped) method, for
wrapping cell text in a spreadsheet
cell, 293

setZoom (int numerator, int denominator)
method, for setting the zoom
magnification for the style sheet, 295

Simple API for XML, website address for
information about, 36

simple content constructs, specifying in a
complexType construct, 15-16

L

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




442

INDEX

simple type declarations, for specifying
information and constraints on
attributes and text elements, 17-18
simpleContent construct, for specifying a
constraint on character data and
attributes, 15-16
simpleContent extension, specifying with an
extension construct, 15-16
simpleType construct, for specifying
information and constraints on
attributes and text elements, 17-18
slash (/) character, designating an absolute
location path with, 88
SOAP 1.1
function of, 363
vs. SOAP 1.2, 368
SOAP 1.1 and 1.2, website address for
information about, 4
SOAP 1.1 body element, function of, 366
SOAP 1.1 encoding styles, detailed rules relating
to, 364
SOAP 1.1 envelope, definition and function
of, 363
SOAP 1.1 fault codes, table of special, 366-367
SOAP 1.1 fault element, function of, 366-367
SOAP 1.1 fault subelements, table of, 366
SOAP 1.1 header element, function of, 364-365
SOAP 1.1/HTTP messaging protocol, port type
bindings to, 379-384
SOAP 1.1 message with attachments, request
message for downloading a project,
368-370
SOAP 1.1 messaging (WS-I BP 1.1), examining,
362-368
SOAP 1.1 messaging framework
basic concepts, 363
examples of WS-1 BP 1.1-conformant
messages, 361-362
operation, 361-362
request message for third use case, 361
simple message exchange, 360-362
SOAP 1.1 response message for third use
case, 362
understanding, 360-370
SOAP 1.1 messaging style, possible styles that
exist, 380
SOAP 1.1 processing model, message
processing rules, 367-368
SOAP 1.1 request message, code for
downloading, 369
SOAP 1.1 response message, code for
downloading, 369-370
SOAP 1.1 W3C Note, website address for, 353
SOAP 1.2 vs. SOAP 1.1, 368
SOAP 1.2 W3C Recommendations, website
address for, 353
SOAP Messages with Attachments W3C Note,
website address for, 354

soap prefix
associated with the WSDL 1.1 to SOAP 1.1
binding, 379-380
use of WSDL 1.1 to SOAP binding in, 373
SOAP roles, introduced in SOAP 1.2, 368
SOAP with Attachments API for Java (SAAJ) 1.3,
as corresponding API for SOAP 1.1
and 1.2,4
soapenv:actor attribute, function of on the
header block, 365
soapenv:Body element
function of, 366
mandatory in soapenv:Envelope, 364
soapenv:Envelope element, as root element of a
SOAP 1.1 message, 363
soapenv:Fault element, function of, 366-367
soapenv:Header child element
attributes, 364-365
main purpose of, 364
optional for soapenv:Envelope, 364
soapenv:mustUnderstand attribute, function of
on the header block, 365
soap:operation binding, code for defining
download wsdl:operation, 381
software
downloading and installing for running
JAXB 1.0 examples, 147
downloading and installing for running
JAXB 2.0 examples, 169
sort.xslt, code for setting the style sheet to, 124
Source class, in javax.xml.transform
package, 121
source tree
for example XML document, 112
transforming to a result tree, 124
source XML Schema, binding of to a set of
schema-derived Java content classes,
140-141
spreadsheet. See also Excel spreadsheet
code for constructing, 294-295
HSSFSheet methods to set different
characteristics of, 295
procedure to create, 292-301
SQL extension and rowset function, database
tool for storing XML, 249
SQL script catalog.sql, running to create an
example table in the MySQL database,
332
SQL:2003 standard
JDBC 4.0 API specification support for, 250
website address for an overview of, 249
SQLXML object
adding data to, 252
createSQLXML() method for creating,
252-253
initializing and adding data to, 254
retrieving, 258
storing in a database table, 252
SQLXML value, setting, 256



standalone attribute, for an XML declaration, 6
start tag, use of within an element, 6
START_ELEMENT event type, element prefix
returned by the getPrefix() method, 58
startDocument() method, in the
CustomSAXHandler class, 51
startElement() method
in the CustomSAXHandler class, 51
of the LSPParserFilter interface, 280
Statement object
in the Ajax application, 340-341
creating, 257
status property, provided by XMLHttpRequest
object, 330
statusText property, provided by
XMLHttpRequest object, 330
StAX API (JSR-173)
advantage over SAX, 57
event-based APIs offered by, 37-38
how it differs from the SAX API, 37
key points about, 57
parsing with, 57-62
website address for information about, 188
StAX cursor API
event types and allowed methods, 38
key points about, 37-38
StAX iterator API, key points about, 38
StAXParser application, code showing the
output from in Eclipse, 60-62
StAXParser.java, code example for complete
cursor API parsing application, 59-60
stmt elements
adding subelements to, 302
adding to construct an XML document, 302
storeXMLDocument() method, in the
XMLToSQL.java application, 260-264
string datatype, 88
style sheet, XML documents containing XSL
Transformations referred to as, 111
substitutionGroup attribute, element
declarations using added to JAXB 2.0, 164
Sun Java System Application Server Admin
Console, selecting services.wsdl in, 413
Sun One Application Server 9.0
building and deploying the web service
application to, 400-406
as part of Java EE 5 SDK, 385-386
verifying that it is running and accessing the
administration console, 386
svcbindings.xml, complete customization file
for WSDL 1.1 to Java bindings:
services.wsdl, 391-392
switch statement, using to set row values for a
column, 296
switch values, table of commonly used with
xindice command, 223
system properties, setting for the Chapter12
project, 317-318

INDEX

T

tag name, rules for valid, 6
target namespace, for example WSDL 1.1
document, 372
Testproject.zip file, in Chapter14 project, 387
text(), function of as node test, 91
text node
adding to a result tree with the xsl:text
element, 119
obtaining the text value for, 46
Text node type, function of in XML
documents, 35
text rotation, adding to cell text, 293
title element
moving the cursor to the start of, 205
setting for an article element, 155, 175
toChild(String name) method, XmlCursor
interface navigation method, 204
toChild(String namespace, String name)
method, XmlCursor interface
navigation method, 204
toChild(int index) method, XmlCursor interface
navigation method, 204
toCursor(XmlCursor moveTo) method,
XmlCursor interface navigation
method, 205
toEndDoc() method, XmlICursor interface
navigation method, 205
toEndToken() method, XmlCursor interface
navigation method, 205
toFirstAttribute() method, XmlCursor interface
navigation method, 205
toFirstChild() method, XmlCursor interface
navigation method, 205
toFirstContentToken() method, XmlCursor
interface navigation method, 204
token model
navigating an XML document in small
increments with, 203
table of token types, 204
token types, table of, 204
toLastAttribute() method, XmlICursor interface
navigation method, 205
toLastChild() method, XmlCursor interface
navigation method, 205
toNextAttribute() method, XmlCursor interface
navigation method, 205
toPrevToken() method, XmlCursor interface
navigation method, 205
toStartDoc() method, XmlCursor interface
navigation method, 205
toString() method, outputting a modified
document with, 206
transform(DOMSource, StreamResult) method,
using to output an XML document, 303
transform(Source, Result) method, using to
transform XML input to output,
318-319

443

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




444

INDEX

Transformation API for XML (TrAX), within
JAXP 1.3 as XSLT 1.0 corresponding
API 4
transformation APIs, conceptual steps in the
use of, 122
Transformer API. See also JAXP's
Transformer API
using to generate an XML document, 303
Transformer class
in javax.xml.transform package, 121
as main class for transforming a source tree
to a result tree, 122
for serializing a DOM document model to an
XML document model, 269
Transformer object
creating for the Chapter12 project, 318
registering an error handler with, 123-124
registering an ErrorListener with, 123-124
setting the output properties on, 122
TransformerFactory class
instantiating with the static method
newlnstance(), 122
in javax.xml.transform package, 121
using to generate Transformer objects, 122
TransformerFactory implementation class,
lookup procedure for obtaining, 122
TransformerFactory object, obtaining a
Transformer object from, 303
transforming, with XSLT, 111-135
transforming identically, copying an input XML
document to an output document
without changing, 126-127
TrAX. See Transformation API for XML (TrAX)
TrAX APIs, using to transform an XML
document, 121-124
TrAX application, for demonstrating some
example of XSLT transformations,
124-134
types prefix, for defining schema type for
example WSDL 1.1 document, 373
types:projectsDetail schema element,
GetProjects abstract message based
on, 376
types:userInfo schema element, GetProjects
abstract message based on, 376

u
UDDI. See Universal Description, Discovery,
and Integration (UDDI)
union construct, for specifying a union of
simpleTypes, 18
Universal Description, Discovery, and
Integration (UDDI), WS-I BP 1.1
endorsed registry for web services, 354
unmarshal() method, function of, 178
unmarshaling
steps for, 157
steps to follow for, 177
an XML document, 157-160, 200-203
XML documents, 177-180

UnMarshaller object
code for creating, 177
creating for unmarshalling XML documents
to Java objects, 157
creating to unmarshal an XML document to
aJava document, 177
unordered list of elements, defining in an XML
Schema, 13-14
unparsed entities. See entities
updateRow() method, using to update a
ResultSet database row, 257
updateSQLXML(int columnIndex, SQLXML
sqIXML) method, for updating values
in the ResultSet object, 256
updateSQLXML(String columnName, SQLXML
sqIXML) method, for updating values
in the ResultSet object, 256
use case scenarios
downloading documents from a project, 360
examples, 359-360
getting information about all projects, 360
removing documents from a project, 360
userInfo schema type, containing email and
password information, 375
UserLocal.java, UserLocal EJB in, 400
users, registering new with the web service, 406
UserService class, implementation of the
UserLocal interface by, 400
-use-runtime <pkg> xjc command option,
function of, 149
UsOrCanadaAddress, derived with
generateValueClass set to false,
168-169
UsOrCanadaAddress class code, JAXB 2.0 code
for versus JAXB 1.0 binding, 166-168
UsOrCanadaAddressType, interface code, 143
utilities, 287-323
for converting XML to spreadsheet and vice
versa, 289-309
utility Java APIs, discussed in book, 4
utility programs. See utilities

'}

validateCatalogld() function, invoking on the
onkeyup event, 338
validating attribute, code for setting to true, 49
Validating property, setting, 66
validation
configuration of JAXP parsers for, 68
configuring a parser for, 73
scenarios where an application may need to
decouple from parsing, 66
validation API, criteria for selecting the
appropriate JAXP 1.3, 66
Validator class, code for defining, 73
variable vs. parameter, 118
variables, specifying in XSLT, 118
vendor-specific tools, table of, 249
VersionMismatch fault code, Soap 1.1, 367



vertical alignment types, short values for setting
vertical alignment, 293

visitNode() method, function of, 46

visual XML editor, website address for, 39

w
W3C (World Wide Web Consortium), website
address for, 3
W3C Recommendations and Java APIs covered
in book, 3-4
W3C Working Draft for the XMLHttpRequest
object, website address for, 330
web applications, building with Ajax, 329-351
web browser, installing one that supports the
XMLHttpRequest object, 331-332
web folder, in Chapter14 project, 387
web server, use of interchangeably with
application server, 330
web service application
building and deploying to Sun One
Application Server 9.0, 400-406
configuring settings for and deploying the
project.ear application, 404
deploying, 402-406
testing the deployment of, 404-406
web service client, generated service proxy class
used to interact with the web service,
407-412
web services
architectural models, 356-359
aspects of from the client perspective,
354-355
basic concepts, 354-356
building XML-based, 353-415
interaction of from a client perspective, 355
output from testing, 406
overview of, 353-354
understanding the architecture, 354-359
uploading documents to a project, 359-360
web services architecture
example of service-oriented model, 358
resource-oriented model, 359
understanding, 354-359
Web Services Description Language
(WSDL) 1.1, website address for
information about, 4
webapp target, function of, 334
website address
for Amazon, 353
for an Amazon web service, 355
describing XML Schema 1.0, 3
for detailed information about
XMLBeans, 185
for Document Object Model Level 3 Load
and Save information, 4
for downloading and importing the
Chapterl4 project, 386
for downloading Apache FOP, 311

INDEX

for downloading J2SE 5.0 software
development kit (SDK), 40

for downloading Java projects for
applications in book, 29

for downloading Saxon 8.1.1 XSLT, 187

for downloading StAX API (JSR-173), 57

for downloading the Chapter10 project, 269

for downloading the Chapterl1 project, 290

for downloading the Chapter12 project, 312

for downloading the Chapter13 project, 333

for downloading the Chapter3 project, 68

for downloading the Chapter5 project, 120

for downloading the Chapter6 project, 147

for downloading the Chapter7 project, 188

for downloading the Chapter8 project, 219

for downloading the Chapter9 project, 251

for downloading the Eclipse IDE, 19

for downloading the Java EE 5 SDK, 385

for downloading the JAX-WS 2.0
specification, 390

for downloading the JBoss application
server, 219

for downloading the snapshot release of
Mustang, 40

for downloading the Xerces-2j classes, 218

for downloading the Xerces classes, 218

for downloading the Xindice software, 218

for downloading the XMLBeans binary
version, 187

for DTD for the XSL-FO object, 314

for an Eclipse plug-in for XPath expression
examples, 86

for formal description of an Amazon web
service, 354

for information about Apache Ant, 333

for information about Berkeley DB XML
database, 216

for information about dbXML database, 216

for information about Excel Viewer, 290

for information about J2SE 5.0, 120

for information about Java Community
Process, 140

for information about JDBC technology, 332

for information about JDK 5.0, 85

for information about JDOM, 85

for information about SAX, 48

for information about Saxon, 111

for information about Simple API for
XML, 36

for information about StAX API JSR-173), 188

for information about the MySQL
Connector/]J driver, 251

for information about the MySQL
database, 251

for information about Xalan-Java, 111

for information about Xerces2-j, 269

for information about Xindice native XML
databases, 215

445

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




INDEX

for information about XML 1.0 markup
declaration syntax, 65
for information about XML:DB XUpdate
language, 216
for information about XML Schema
components, 141
for information about XSL Transformations
(XSLT) 1.0, 4
for Institute of Electrical and Electronics
Engineers (IEEE), 88
for Java API for XML Processing
information, 65
for Java Enterprise Edition information,
3,354
for JAX-WS 2.0 information, 354
for JDOM open source project, 5
for JSR-175 regarding annotations, 164
for JSR-224, 385
for MySQL 5.0, 332
for the seminal article on Ajax, 329
for SOAP 1.1 encoding rules, 364
for the SOAP 1.1 W3C Note, 353
for the SOAP 1.2 W3C Recommendations, 353
for the SOAP Messages with Attachments
W3C Note, 354
for specifying the schema definition
source, 67
for specifying the schema language used in
the schema definition, 67
for a visual XML editor, 39
for W3C (World Wide Web Consortium), 3
for W3C Working Draft for the
XMLHttpRequest object, 330
for W3C XQuery recommendation, 203
where elements of an XMLBean binding
configuration file are defined, 196
for the WSDL 1.1 schema, 370
for the WS-I Basic Profile (BP) 1.1
specification, 354
for WS-Security 1.1 OASIS standard, 364
for the Xerces2-j SAX parser, 76
for XML 1.0 rules for crafting well-formed
XML documents, 3
for XML 1.0 W3C Recommendation, 5
for XML 1.1 W3C Recommendation, 5
for XML Schema Part 1: Structures and
Part 2: Datatypes, 11
for XMLEspresso, 85
for the XPath specification, 85
for XQuery details, 208
for XSL family of recommendations, 111
for the XSLT specification, 111
web.xml, code for in the Ajax application, 339
wildcard schema components, added to
JAXB 2.0, 164
working directory, setting for xjc in the External
Tools dialog box, 150
Working Directory field, for setting the working
directory for xindice, 223-224

write(HSSFWorkbook) method, for outputting
the Excel workbook, 295
write(Node, LSOutput) method
using to output a filtered XML
document, 282
using to output an XML document, 276
writeAttribute(String localName, String value)
method, adding the attributes title and
publisher to the XMLStreamWrite
object with, 255
writeCharacters(String text) method, for adding
the title element text, 255
writeEmptyElement(String localName)
method, using to generate an empty
element, 254
writeEndElement() method, adding an end
element tag with, 255
writeStartDocument(String encoding, String
version) method, using to start an XML
document, 254
writeStartElement(String) method, adding
the elements journal, article, and title
with, 255
writeStartElement(String localName) method,
for adding the root catalog element of
the example XML document, 254
writeStartElement(String prefix, String
localName, String namespaceURI)
method) method, creating an element
with a namespace prefix with, 254
wsclient folder, in Chapter14 project, 387
WSDL. See Web Services Description Language
(WSDL) 1.1, WSDL 1.1
WSDL 1.1
document structure, 370-372
to Java mapping for services.wsdl, 389-397
to SOAP binding, namespace specified in, 373
understanding, 370-385
WSDL 1.1 document
basic outline of, 371-372
building one that formally describes the
example web service, 372-385
code example defining the data types for use
in, 373-375
definitions for example web service, 377-378
how wsimport tool processes, 388
importing the types.xsd schema definition
into, 376
WSDL 1.1 language constructs, namespace they
are defined in, 372
WSDL 1.1 to Java mapping
customizing for services.wsdl, 390-392
general concepts of this process, 389-390
WSDL 1.1 W3C Note, website address for, 354
wsdl folder, in Chapter14 project, 387
wsdl:binding definition, for mapping abstract
messages to the soapenv:Body ¢
ontent, 376
wsdl:binding element, function of, 371



wsdl:definitions element, child elements
contained in, 370-371
wsdl:fault element
binding, 382
function of, 371
wsdl:input element
binding, 381
function of, 371
for a one-way exchange pattern, 378
wsdl:message element
function of, 370
one or more wsdl:part elements contained
in, 377
wsdl:operation elements
binding to SOAP 1.1 messaging, 381-382
contents of in the general request-response
message exchange pattern case, 378
elements contained in, 371
function of in a wsdl:portType element,
370-371
one or more contained in each
wsdl:portType element, 378-379
wsdl:output element
binding, 382
function of, 371
wsdl:port element, defined, 371
wsdl:portType element
function of, 370-371
function of in WSDL 1.1 document, 378-379
port types for the example web service, 379
wsdl:service element, wsdl:port element
defined within, 371
wsdl:types element, function of, 370
wsgen folder, in Chapter14 project, 387
WS-I Basic Profile (BP) 1.1 specification,
website address for, 354
wsimpl folder, in Chapterl4 project, 387
wsimport tool
creating an external tools configuration for,
388-389
running, 393-394
setting up, 388-389
using to generate the SEI, the service, and the
JAXB 2.0 object bindings, 388

X
Xalan-Java, website address for information
about, 111
Xerces classes, website address for
downloading, 218
Xerces2-j, website address for information
about, 269
Xerces-2j classes, website address for
downloading, 218
Xerces2-j SAX parser
features supported by, 76-77
website address for complete list of
features, 77

INDEX

xindice
configuration for retrieving an XML
argument, 229
configuring as an external tool in Eclipse,
223-225
deleting and modifying an element, 234-235
implementing XML:DB XUpdate command
to update XML documents, 232-236
setting the working directory for, 223
xindice command
accessing the Xindice command-line tool
with, 222-223
to add an XML document to a collection, 227
for creating a top-level collection named
catalog, 226
to delete an XML document, 235
examples, 225-236
output in Eclipse from retrieving an XML
document, 229-230
to query an XML document, 230
for retrieving the publisher attribute of the
catalog element, 230
running to retrieve the XML file catalog.xml
in Eclipse, 228
table of commonly used switch values, 223
table of commonly using action values, 223
Xindice command-line tool
command syntax, 222-223
creating an instance of the Xindice database
collection with, 226-227
using, 222-237
XINDICE configuration
to delete an XML document, 236
to delete the collection catalog, 237
to query an XML document, 232
to update an XML document, 234
Xindice database
adding an XML document to, 227-228, 239
creating a collection in, 226-227
creating a collection in using the XML:DB
API, 237-238
creating an instance of, 238
deleting an XML document from, 242-247
deleting the collection catalog from, 236-237
querying using XPath, 230-232, 240
retrieving an example XML document from,
239-240
retrieving an XML document from, 228-230
using Xindice XML:DB API to access,
237-247
XML:DB driver implementation class for, 238
XINDICE external tools
configuration for, 223-224
configuration for adding an XML document,
227-228
configuration to add a collection, 227
setting the environment variable
JAVA_HOME for, 224
Xindice JAR files, table of, 220

447

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




INDEX

xindice message, output in Eclipse from adding
an XML document, 228
Xindice native XML databases
installing the software, 218-219
overview of, 217-218
points to remember about organization
of, 218
reasons for focusing on in this book, 216
vs. relational XML databases, 215
simple example of querying, 217-218
storing XML in, 213-247
website address for information about, 215
Xindice software
configuring with the JBoss application
server, 219
installing, 218-219
website address for downloading, 218
XINDICE_HOME environment variable,
defining in Chapter8 project, 222
xindice_resources folder, adding to the source
path in the Java build path area, 221
XIndiceDB application, configuring before
running, 222
XIndiceDB.java, uses for, 242-246
xjc. See also xjc binding compiler
adding environment variables for, 151-153
configuring as an external tool in Eclipse,
150-153
customizing of schema bindings, 160
schema-derived content classes generated
by, 153
setting the working directory and program
arguments for, 150-153
xjc binding compiler
function of in JAXB API, 140-141
running on the example schema in
Chapter 6, 152-153
xjc command options, table of, 149
xjc compiler, running on the catalog.xsd
example schema, 171
xjc schema, how it works in Listing 6-1, 142-143
XML
and databases, 213-264
storing in Xindice native XML databases,
215-247
XML 1.0
primer, 5-11
website address for rules for, 3
XML 1.0 W3C Recommendation, website
address for, 5
XML 1.1 W3C Recommendation, website
address for, 5
XML and Java, introduction to, 3-31
XML binding declarations, for overriding the
default XML Schema to Java
bindings, 141
XML content, storing in relational databases,
249-264

XML cursor
code for popping current off the stack, 207
moving to the start of the catalog
element, 207
obtaining from CatalogDocument
object, 207
positioning, 204-205
XML databases. Seerelational databases
XML data type, new for storing XML content,
249-250
XML declarations
code example for defining, 6
example with encoding and standalone
attributes, 6
in XML documents, 6
XML documents
adding indentation to, 134
central concepts that underlie all syntactic
rules defining, 6
code for transforming to XSL-FO, 319
code listing for, 11-12
code listing for complete example, 10
converting a DOM document model to an
XML document model, 267
converting an Excel spreadsheet to, 301-309
converting to an Excel spreadsheet, 291-301
converting to Excel spreadsheets, 289-309
converting to PDF documents, 311-325
converting to XSL-FO formatting object,
313-321
creating a Java object representation of,
157-158
creating a Java object tree for marshaling
into, 174
creating a Java object tree from
(unmarshaling), 177-180
creating using DocumentBuilderFactory
object, 302
defining comments in, 8
deleting from a Xindice database, 242-247
DOCTYPE declarations in, 8-9
entities in, 9-10
example of a modified with a journal
element added, 206
example simple for addressing with XPath,
85-86
filtering, 279-285
getting and setting values within with
XmlCursor API, 203
loading for the Chapter10 project, 270-275
mapping to a DOM document model, 267
marshaling, 153-157, 174-177
marshaling the Java object representation
CatalogType to, 175-177
merging, 130-131
modifying the structure of with XmlCursor
API, 203
Namespaces in, 10-11
navigating, 258-259



objectives of parsing, 33-63
output in Eclipse from merging, 131
output in Eclipse from the XPath query
of, 230
parsing to obtain a Document object, 294
procedure for saving, 275-276
procedure to generate from an Excel
spreadsheet, 301-302
procedure to load for Chapter10 project,
270-271
processing instructions in, 8
pull parsing approach, 37-38
querying with XQuery, 203, 208-211
removing duplicates from, 127
retrieving from a database table column of
type XML, 257
retrieving from the Xindice database,
228-230
saving a DOM document model as, 275-278
serializing and deserializing, 267
specialized DOM node types for, 34
steps for marshaling the example document,
154, 174
storing in a database table column of type
XML, 254-257
traversing with the XmlCursor API, 203-211
unmarshaling, 177-180, 200-203
using overload parse methods in the
SAXParser class for parsing and
validating, 78
validating, 81
validating one that is being unmarshaled,
157
validating using a parser, 73
xindice command to delete, 235
XINDICE configuration to query, 231
XML editor
website address for, 39
XMLEspresso as, 85
XML element, code example of, 6
XML Namespaces, in XML documents, 10-11
XML Path Language (XPath). See also XPath
website address for information about, 3
XML resource
deleting with the
removeResource(XMLResource)
method, 242
retrieving, 240
XML response, returning in the Ajax
application, 341
XML Schema
binding Java classes to, 180-183
compiling in Chapter 7, 189-196
compiling with the scomp compiler, 192-193
generated from the annotated class
Catalog.java, 183
XML Schema 1.0, website address describing, 3

INDEX 449

XML Schema 1.0 definition language
built-in datatypes, 12
main type constructs in, 12
primer for, 11-19
XML Schema binding, to Java representation,
141-144, 165-169
XML Schema components
not supported in JAXB 1.0, 141
redefined using the redefine declaration
added to JAXB 2.0, 164
website address for information about, 141
XML Schema document, generating from the
annotated class Catalog.java, 182-183
XML Schema language, namespace for example
WSDL 1.1 document, 372
XML-based web services, building, 353-415
XMLBean classes
alternate package and ways in which they
may be generated, 196
default package in which they get
generated, 196
XMLBeans
binding with, 185-211
development of by BEA, 196
vs. JAXB, 186
parsing an XML document with, 200
reasons for studying for XML-to-Java
binding, 185
website address for detailed information
about, 185
XMLBeans 2.0, website address for
downloading the binary version, 187
XMLBeans 2.0 AP], utility for XML binding to
JavaBeans, 4
XMLBeans binding configuration file, website
address for definition of elements of,
196
XMLBeans binding framework, overview of,
186-187
XMLBeans bindings, customizing, 196-197
XMLBeansCursor.java, code for, 209-211
XMLBeansMarshaller.java, for constructing the
example XML document, 198-199
XMLBeansUnMarshaller.java
example of output from, 202-203
using to unmarshal catalog.xml, 201-202
XmlCursor API
importing to navigate an XML document
with XML cursors, 203
operations you can perform with, 203
table of navigation methods, 204-205
traversing an XML document with, 203-211
XML:DB API
adding an element using, 240-241
modifying an element using, 241
using to create a collection in the Xindice
database, 237-238
using to delete an element, 241

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




450

INDEX

XML:DB APIs, utility for accessing and updating
XML documents, 4
XML:DB XUpdate language, website address for
information about, 216
XMLEspresso, website address for, 85
XMLEventReader interface, as main interface
for parsing an XML document, 38
XMLEventReader object, code for creating in
StAX, 62
xmlFile, defined, 204
XMLHttpRequest object
coverage of, 329
creating an instance of in IE 6, 330
creating an instance of in IE 7, 330
function of, 330-331
XMLHttpRequest object methods
functions of, 331
XMLHttpRequest request
procedure steps to send to the server, 338
web server-side processing of, 340-351
xmlns attribute, specifying a default XML
Namespace URI with, 10-11
xmlns:prefix attribute, specifying a nondefault
XML Namespace URI with, 10-11
XmlObject interface, using newCursor()
method of to create an XML cursor, 204
XMLResource, creating and adding to a
collection, 239
-xmlschema xjc command option, for
specifying the input schema is a W3C
XML Schema, 149
XMLSchemaValidator.java, complete code
example for, 82-83
XMLStreamReader events, table of, 58
XMLStreamReader interface
as main interface for parsing an XML
document, 37
parsing of an XML document using the
cursor API, 57-62
XMLStreamReader object
code for creating, 57
navigating an XML document with, 258-259
table of event types returned by, 58
XMLStreamWriter object
adding the attributes title and publisher
to, 255
creating, 254
XMLToExcel.java, for converting an XML
document to an Excel spreadsheet,
295-300
XML-to-Java datatype binding declarations,
160
XMLToPDF java, for converting an XML
document to a PDF document,
323-324
XMLToSQL application, importing packages
needed to work with the SQLXML
object, 254

XMLToSQL.java application
complete example code for, 260-264
setting up to store and retrieve XML datain a
relational database, 251-252
XPath. See also XML Path Language (XPath)
addressing with, 85-110
obtaining node values with, 131-132
querying the Xindice database using, 240
selecting XML nodes with, 207
using to query Xindice database, 230-232
XPath API
comparing to the DOM AP], 94-95
function of, 97
major advantages of using over the DOM
API, 94
XPath data model, for catalog.xml, 87
XPath expressions
applying, 93-96
evaluating a compiled, 97-98
evaluating directly, 99
examples, 86-88
explicitly compiling, 97
JAXP 1.3 XPath API interfaces to evaluate, 96
for querying a Xindice database, 240
that address node sets within catalog.xml,
87-88
understanding, 85-93
XPath interface evaluate() methods, table of, 99
XPath object
code for adding namespace to, 107
code for creating, 97
code for setting the namespace context on,
101
XPath return types
for the XPath interface evaluate() methods,
98-99
for the XPathExpression interface evaluate()
methods, 98
XPath specification
as part of the XSL family, 111
website address for, 85
XPathEvaluator class, creating, 102
XPathEvaluator.java application, output from
in the Eclipse IDE, 102-105
XPathExpression (interface), function of, 97
XPathExpression evaluate() methods, table
of, 98
XPathFactory (class), function of, 97
XQuery, website address for information
about, 208
XQuery processor, website address for
downloading, 208
xsd prefix, using with the XML Schema
language namespace, 372
xsd:complexType definitions, 376
xsd:element declarations, 376
xsi:noNamespaceSchemal.ocation attribute,
specifying location of a no-namespace
schema through, 67



xsi:schemaLocation attribute, for specifying the
location of a namespace-aware
schema, 67
XSL 1.0 specification, website address for
information about, 311
XSL family
specifications included in, 111
website address for recommendations, 111
XSL Formatting Objects (XSL-FO) specification,
as part of the XSL family, 111
XSL Transformations (XSLT), 111-135. See also
XSLT
XML documents containing referred to as a
style sheet, 111
XSL Transformations (XSLT) 1.0, website
address for information about, 4
xsl:apply-template element, vs.
xsl:call-template element, 117
xsl:apply-templates element, for selecting a
node set from the source tree, 117
xsl:attribute element
for creating the attribute title, 119
provided by XSLT specification for creating
an attribute, 133
xsl:call-template element
function of, 117
vs. xsl:apply-template element, 117
xsl:choose element, provided by XSLT
specification for conditional
processing, 119
xsl:copy-of element, for copying a selected
node, 119
xsl:element element
for creating a table element, 119
provided by XSLT specification for creating
an element, 133
XSL-FO document
converting to a PDF document, 322
table of commonly used elements in,
313-314
XSL-FO elements, table of commonly used,
313-314
XSL-FO formatting object
converting an XML document to, 313
procedure for converting an XML document
to, 313
website address for DTD for, 314
xsl:for-each element, for iterating over a node
set, 118
xsl:if element, provided by XSLT specification
for conditional processing, 119
xsl:output element, as subelement of the
xsl:stylesheet element, 116
xsl:param element
specifying variables in XSLT with, 118
vs. xsl:variable element, 118
xsl:sort element, using to sort a group of
elements, 128

INDEX 451

xsl:stylesheet element, as root element in an
XSLT style sheet, 115-116
XSLT
overview of, 112-119
processing algorithm, 114-115
setting up the Eclipse project, 120-121
syntax and semantics, 115-119
XSLT processing algorithm, for transforming a
source document using an XSLT style
sheet, 114-115
XSLT specification
as part of the XSL family, 111
website address for, 111
XSLT style sheets
code example and examination of, 113-114
function of, 111
transforming a source document using,
114-115
using to demonstrate a specific
transformation example, 120-121
XSLT transformations
code for all examples, 124-126
TrAX application for demonstrating some
examples of, 124-134
xsl:template element, as core XSLT associated
with a pattern, expressed as an XPath
expression, 116-117
xsl:text element, adding a text node to a result
tree with, 119
xsl:value-of element, for adding a text node in
the result tree, 119
xsl:variable element
specifying variables in XSLT with, 118
vs. xsl:param element, 118
XUpdate commands
modifying an XML document with, 240-241
updating a collection using, 241
using to modify documents, 232-236
xupdate.xml configuration file
for adding a journal element to a catalog.xml
document, 233-234
for deleting and modifying an element,
234-235

2
=
=%
=3
—
)
(7]
[yl
@
=
=
=3
=
=
=
)
c
o
@
=3
=
o
@
x
)
°
=
@
(7]
@
Q
(=]
3




	Pro XML Development with JavaTM Technology
	Table of Content
	PART 1 Parsing, Validating, and Addressing
	Chapter 1 Introducing XML and Java
	Chapter 2 Parsing XML Documents
	Chapter 3 Introducing Schema Validation
	Chapter 4 Addressing with XPath
	Chapter 5 Transforming with XSLT

	PART 2 Object Bindings
	Chapter 6 Object Binding with JAXB
	Chapter 7 Binding with XMLBeans

	PART 3 XML and Databases
	Chapter 8 Storing XML in Native XML Databases: Xindice
	Chapter 9 Storing XML in Relational Databases

	PART 4 DOM Level 3.0
	Chapter 10 Loading and Saving with the DOM Level 3 API

	PART 5 Utilities
	Chapter 11 Converting XML to Spreadsheet, and Vice Versa
	Chapter 12 Converting XML to PDF

	PART 6 Web Applications and Services
	Chapter 13 Building Web Applications with Ajax
	Chapter 14 Building XML-Based Web Services

	Index




